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T1: Permanent magnets

Part A: Interaction of two magnets.

(A.1) Since the distance between the magnets is big as
compared to their size, we can approximate each of
them as a dipole of magnitude

m =
π

4
d2hJ = 0.75Am2.

Since the two dipoles are parallel to each other and to
the line connecting them, the interaction energy of one
of the magnets with the field of the other magnet is

W = −B⃗ · m⃗ = −µ0m
2

2πL3
,

and by taking a derivative we obtain

F1 =
dW
dL =

3µ0m
2

2πL4
≈ 0.21mN.

a)m = π
4 d

2hJ 0.2 pts
b)W = −B⃗ · m⃗ 0.1 pts
c) F1 = dW

dL 0.1 pts
d) F1 = 3µ0m

2

2πL4 0.1 pts
Answer: 0.21mN 0.1 pts

(A.2) In the case of a homogeneous magnetization, the
molecular currents in the bulk of thematerial cancel out,
leaving only a surface current at the surfaces which are
not perpendicular to the magnetization vector. Hence,
there is a surface current on the side surfaces of the
cylinder. As the height of the surface is much smaller
than the radius, these currents can be approximated as a
ring current I; the dipole moment πd2I/4 of the ring cur-
rent must be equal to the total dipole moment πd2hJ/4
of the magnet, hence I = Jh ≈ 2.4kA.

a) currents inside cancel out,
surface currents remain 0.1 pts
c)m = IA 0.1 pts
d) I = Jh 0.1 pts
Answer: 2.4kA 0.1 pts

(A.3) Since the distance between themagnets is now sig-
nificantly smaller than their diameter, the force can be
approximately found as the force between two straight
currents I of length πd at distance L:

F2 =
µ0I

2

2πL
πd =

µ0I
2d

2L
≈ 14N.

a) Consider as straight currents 0.3 pts
b)B = µ0I

2πL 0.3 pts
c) F2 = πdIB 0.2 pts
d) F2 = µ0I

2d
2L 0.1 pts

Answer: 14N 0.1 pts

(A.4) The chain will most likely break below the top-
most magnet because then the magnetic pull between
the magnets needs to compensate the largest possible
weight. Let the number of magnets be N + 1, and the
mass of a single magnet M = π

6 ρδ
3 ≈ 0.5 g; then the

weight of the magnets F = MNg is balanced by the mag-
netic force

F =
3µ0m

2

2πδ4

N∑
n=1

1

n4
= µ0m

2π360δ4,

where m = π
6 Jδ

3 ≈ 78mAm2 and we have assumed that
N ≫ 1 so that we can assume in the sum N = ∞. From
the force balance we obtain

N =
µ0m

2π3

60Mgδ4
≈ 1320;

hence, the total length of the chain is Nδ = 6.6m. Note
that N = 1320 is indeed much bigger than 1.

a) It will break at the top 0.1 pts
b)M = π

6 ρδ
3 0.1 pts

c) F = MNg 0.2 pts
d) F = 3µ0m

2

2πδ4

∑N
n=1

1
n4 0.2 pts

e)m = π
6 Jδ

3 0.2 pts
f) l = µ0m

2π3

60Mgδ3 0.1 pts
Answer: 6.6m 0.1 pts

Remark: if the sum is substituted with a finite sum as an
approximation, with two or three terms in it, full marks
are given. If only one term is kept, subtract 0.1 fromd) or
f). Remark 2: It’s possible to get a range of final answers
depending on the approximations used for g, mass, mag-
netic moment, etc. Answers that round to 1300 balls
should definitely not be penalized, which corresponds
to a distance range of 6.25 - 6.75m. 1260 balls (6.3m) is
what you getwith g=10 andmass = 0.5g; 1320 balls (6.6m)
is what you get with g=9.8 and a mass of 0.49g (or, with-
out rounding the mass and magnetic moment and can-
celling out the volume).
(A.5) Solution 1. Each of the balls creates magnetic field
of a dipolem; the magnetic dipole creates the same field
wich would be created by two magnetic charges, equal
by modulus to q and of opposite sign, at a distance s =
m/q, assuming that this distance s is much smaller than
the distance from the dipole to the observation point.
Here it is convenient to select s = δ (hence q = m/δ)
because in that case almost all the positive and nega-
tivemagnetic charges overlap and cancel out each other.
The only oneswhichwill not cancel out are themagnetic
charges at the chain’s endpoints. One of these charges is
very far so that the field at P is the field of a magnetic
charge at O:

B =
µ0q

4πr2
=

µ0m

4πδr2
=

Jµ0δ
2

24r2
.

a) Idea of magnetic charges 0.4 pts
b)q = m/δ 0.4 pts
c) B = µ0q

4πr2 0.4 pts
d) B = Jµ0δ

2

24r2 0.3 pts

The same scheme applies for solutions which work with
electrical charges, with a proportionality constant relat-
ing that field to the magnetic field of magnetic dipoles.
Then, the sub-score a) is given for the idea of calculating
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the field of electrical dipoles (0.2 pts), with a correct pro-
portionality factor between the two fields, k = B/E =
µ0ε0 = c−2 (0.2 pts).

Solution 2. It is clear that from distances larger than
the diameter of a magnet, the shape of the magnets
doesn’t matter; what matters is only the total dipole mo-
ment as this is what defines the magnitude of the field
at large distances. So, we can substitute the balls with
cylinders of equal volume. Now, let us require the height
of these cylinders to be δ; then the neighbouring cylin-
ders in the chain will be touching each other. As a re-
sult, instead of the chain of balls, we have a long homo-
geneous cylinder. Equal volume means that the cross-
sectional area of these cylinders A = π

6 δ
2. We know

from task A.2 that such a cylinder can be considered as a
long solenoid carrying surface density of bound currents
equal to J . So, the magnetic field inside it B0 = µ0J , and
therefore, it carries magnetic flux Φ = B0A = π

6 δ
2µ0J .

We know that inside the solenoid, magnetic field is con-
stant, and outside, the field is zero. However, this is
valid only until the endpoints of the solenoid are far. All
that flux is released near each of the endpoints of the
solenoid. The released flux needs to satisfy the Maxwell
equations: the B-field needs to have no sources and be
potential. We know that the only solution in such a case
is a central isotropic field B⃗ = f(r)r̂, where r denotes
the distance from the endpoint and r̂ — the correspond-
ing unit vector. From the Gauss law we conclude that
4πr2f(r) = ´Φ = π

6 δ
2µ0J , hence B = Jµ0δ

2

24r2 .

a) Idea of substituting spheres with cylinders 0.4 pts
b)A = π

6 δ
2 0.2 pts

c) Φ = π
6 δ

2µ0J 0.4 pts
d) B = Φ/4πr2 0.4 pts
e) B = Jµ0δ

2

24r2 0.1 pts

Solution 3. This solution follows the solution 2 up to
the point where we have a solenoid with surface cur-
rent density J . After that we observe that at any point
in space, the axial component of the magnetic field is

B = µ0J
Ω

4π
,

where Ω denotes the solid angle under which we can
see the interior surface of the solenoid, minus the solid
angle under which we can see the outer surface. This
can be derived easily from the Biot-Savart law: dBz =
µ0

4πr2 jdzdl⃗ × r̂ · ẑ, where hats denotes unit vectors, dl⃗ —
an infinitesimal vector parallel to the surface current,
and r⃗ — a vector pointing from the observation point
to a point on the solenoid. This can be rewritten as
dBz = µ0

4πr2 jdz⃗×dl⃗ · r̂ = µ0

4πr2 JdA⃗ · r̂, where dA⃗ denotes the
area of a surface element on the solenoid. To complete
our proof, it suffices to notice that d⃗A · r̂ is the apparent
area of the surface element, dΩ = d⃗A · r̂/r2.
Now, at the point P , the outside and inside contribu-

tions to Ω cancel out everywhere except for the circu-
lar opening of the solenoid. Thus, Ω = A cos θ/r2 so
that Bz = Jµ0δ

2

24r2 cos θ. Finally, we can use the Gauss
law to obtain expression for the radial component BR

(with R denoting the radius in cylindrical coordinates)

of the magnetic field. Someone not familiar with vec-
tor calculus can calculate the magnetic flux Φc through
a circle of radius R0 = r sin θ. Then, the cylindri-
cal coordinate R = z tan θ′ so that dR = z cos−2 θ′dθ′,
and 1

r2 = cos2 θ′/z2. Therefore Φc =
∫
2πRBzdR =

πJµ0δ
2

12 cos θ′´dθ′ = πJµ0δ
2

12 sin θ. We can see that this de-
pends only the spherical coordinate θ; by considering
conical frusta with circular faces having the same polar
angle θ we can easily conclude that the magnetic field
must be radial, i.e. B = Bz/ cos θ = Jµ0δ

2

24r2 .

a) Idea of substituting spheres with cylinders 0.4 pts
b)A = π

6 δ
2 0.2 pts

c) Bz = Jµ0δ
2

24r2 cos θ 0.4 pts
d) B = Bz/ cos θ 0.4 pts
e) B = Jµ0δ

2

24r2 0.1 pts

Solution 4. Finally, the solution could be obtained the-
oretically also by summing over all the fields of individ-
ual magnets. However, this is mathematically very de-
manding, therefore full solution is not provided here.
The first steps are as follows. (i) Writing the contribu-
tion Bsz and BsR of a single magnet at distance z from
the point O to the axial and radial (in cylindrical coordi-
nates) components of the magnetic field; (ii) going from
summation of individual contributions to integration by
assuming linear density of dipoles ρm = m/δ so that
dm = mdz/δ; performing integration over z to find the
field components.
The mathematical derivation: A dipole at position z
dm = m

δ dz generates a magnetic field (in Cartesian co-
ordinates):

dBz = dBr′ cos θ − dBθ′ sin θ =
µ0dm

4πr′3

(
2− 3 sin2

θ′
)

dBR = dBr′ sin θ + dBθ′ cos θ =
3µ0dm

4πr′3
sin θ′ cos θ′

Where r′ =
√
r2 + z2 − 2rz cos θ and sin θ′ = r

r′ sin θ are
coordinates relative to the dipole dm. In order to sim-
plify the integration, do substitution: u = z−r cos θ

r sin θ , then
r′ = r sin θ

√
u2 + 1; dz = r sin θdu.

Integration for Bz:

Bz =

∫
dBz =

µ0m

4πδ

∫ ∞

0

dz
1

r′3

(
2− 3r2 sin2

θ

r′2

)

=
µ0m

4πδr2 sin2
θ

∫ ∞

− cot θ
du
[
2(u2 + 1)−3/2 − 3(u2 + 1)−5/2

]
=

µ0m

4πδr2 sin2
θ

[
2u√
u2 + 1

− 2u3 + 3u

(u2 + 1)3/2

]∞
− cot θ

= −µ0m cos θ
4πδr2
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Integration for BR:

BR =

∫
dBR

=
3µ0m

4πδ

(∫ r cos θ

0

dz
1

r′3
· r

r′
sin θ

√
1− r2

r′2
sin2

θ

−
∫ ∞

r cos θ
dz

1

r′3
· r

r′
sin θ

√
1− r2

r′2
sin2

θ

)

= − 3µ0m

4πδr2 sin2
θ

∫ ∞

cot θ

udu

(u2 + 1)5/2

= − 3µ0m

8πδr2 sin2
θ

∫ ∞

cot2 θ

dv(v + 1)−5/2 (v = u2)

= −µ0m sin θ

4πδr2

a) writing correctly Bsz 0.2 pts
b) writing correctly BRz 0.2 pts
c) dm = mdz/δ 0.2 pts
c) Bz = Jµ0δ

2

24r2 cos θ 0.4 pts
d) BR = Jµ0δ

2

24r2 sin θ 0.4 pts
e) B = Jµ0δ

2

24r2 0.1 pts

Remarks: for c) and d), a partial credit of 0.1 pts can
be given for each of these integrals if the initial integral
is written correctly, but the calculation of the integral
is not performed or there are many mistakes. If only
few mistakes were made, subtract 0.1 for each mistake
made. If initial integral is written incorrectly, no points
are given. Points for e) are given only if the final answer
is completely correct.
Another remark: in the integration of BR, if the change
of sign (of the cosine) is ignored, the correct answer
could still be obtained (because the extra parts cancel
out), but the derivation would technically be wrong.

Part B: Interaction of magnets with ferro-
magnetic materials.

(B.1)Due to the boundary condition at the surface of the
ferromagnet, the field lines must enter the plates almost
perpendicularly. Indeed, as it follows from the Ampère’s
circutal law, the tangential component of B⃗/µ is continu-
ous at the surface of a ferromagnet; similarly, the Gauss
law for the magnetic field implies that the normal com-
ponent of theB-field is continuous. From these two facts,
one can derive the “refraction law” for the field lines,
tanα = µ tanβ, where α and β are the angles between
the tangents of a field line and the surface normal, inside
and outside of the ferromagnetic, respectively. From the
fact that µ ≫ 1 we can deduce that as long as α is not
small, β ≈ 0. Those field lines which enter the plate
must exit it somewhere, this happens somewhere far-
ther away from the magnet, see the sketch below.

1  

2  
3  

2  

a) Field line 1 correct 0.2 pts
b) Field line 2 correct 0.4 pts
c) Field line 3 correct 0.4 pts

Remarks:
i) Subtract 0.1 both from b) and c) if the field line does
not enter the plate perpendicularly;
ii) Subtract 0.1 both from b) and c) if the field line does
not refract;
iii) Subtract 0.1 from (b) if its segment rightwards of the
magnet is not shown (note that in the student answer
sheet, the magnet is to the right of the plate, not on top
of it as shown in the solution);
iv) Subtract 0.1 both from a) and c) if the field line does
not form a closed loop.
(B.2) The problem can be solved by introducing an im-
agemagnet—amirror reflection of the realmagnetwith
respect to the surface of the plate, with the dipole mo-
ment being both reflected and flipped. With this im-
age magnet, the boundary condition above the plate is
satisfied: the field lines enter the plate perpendicularly.
Hence, the force and torque exerted to the real magnet
are equal to the force and torque exerted by the image
magnet. The equilibrium is achieved when the dipole is
parallel to the field created by the image magnet which
is the case when the dipole moment is perpendicular to
the plate. The force is almost the same as what was al-
ready found in part A(d), with the only difference that
now there is only the first term in the sum:

F =
3µ0m

2

2πδ4
= 5.9N.

a) Idea of magnetic image 0.3 pts
b) Correct direction of the image J⃗ 0.2 pts
c) F = 3µ0m

2

2πδ4 0.2 pts
d) F = 5.9N 0.1 pts
e) each correct tick 0.1 pts
f) each incorrect tick -0.1 pts

Remark: if e) + f) adds up to a negative number, replace
the total score for those two parts by 0.
(B.3) Solution 1. As explained above, the magnetic field
lines are perpendicular to the surface of the ferromag-
netic plate. Since the gap is narrow as compared to its
width, the field lines are inside the gap almost straight.
Due to the Ampère’s circulation theorem it also means
that the field in the gap is homogeneous. Due to the
Ampère’s circulation theorem, field outside the gap van-
ishes as the gap’s width tends to 0, so in the limit all flux
through the permanent magnet wraps around through
the gap; see the sketch of magnetic field lines. Now, let
us recall that the disc magnet is equivalent to a surface
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current of density J along the curved surface of the disc.
Hence we can write the circulation theorem along the
loop defined by one of the field lines shown in the fig-
ure:

I =

∮
H⃗ · dr⃗ ≈ (B1 +B2)h/µ0,

where B1 and B2 denote the flux density inside the per-
manent magnet and outside the magnet (but still inside
the slit), respectively. Here we have neglected the con-
tribution of the magnetic field inside the ferromagnetic
plate to the integral because µ is very big. Due to the
Gauss law, π

4 d
2B1 = π

4 (D
2−d2)B2; withD = 2d this yields

B1 = 3B2. Thus, B2 = Iµ0/4h = Jµ0/4 = 0.375T and
B1 = 1.125T. In order to find the force exerted to one
of the ferromagnetic plates, we can notice that the force
does not depend on what is creating the magnetic field
and, hence, we can substitute the disc magnet with the
current I in a superconducting ring. Next we apply the
virtual displacement method and increase the distance
between the plates by dx. In the case of a superconduct-
ing ring, themagnetic flux through the ring is conserved,
and therefore, the magnetic field strength inside the gap
will remain unchanged during the virtual displacement.
With all this information we are ready to calculate the
change of the magnetic field energy. The magnetic field
energy inside the ferromagnet can be neglected because
its density is ca µ times smaller than inside the gap. So,
the energy is changed only because the volume of the
gap is changed:

dW =
π

8µ0
[d2B2

1 + (D2 − d2)B2
2 ]dx =

(
3π

2µ0
B2

2d
2

)
dx

which means that the force

F =
dW
dx =

3π

2µ0
B2

2d
2 =

3π

32
J2µ0d

2 ≈ 210N.

a) B⃗ in the slit is homogeneous 0.2 pts
b) B⃗ in the permanent magnet is homog. 0.2 pts
c) B⃗ in slit and in perm. magn. is normal 0.1 pts
e) I = (B1 +B2)h/µ0 0.1 pts
f) π

4 d
2B1 = π

4 (D
2 − d2)B2 0.1 pts

g) B2 = Iµ0/4h 0.1 pts
h) B1 = 3Iµ0/4h 0.1 pts
i) dW = π

8µ0
[d2B2

1 + (D2 − d2)B2
2 ]dx 0.3 pts

j) F = dW
dx 0.1 pts

k) 3π
32 J

2µ0d
2 0.1 pts

l) F ≈ 210N. 0.1 pts

Solution 2. The second solution followsmostly the first
one, and deviates only after the fields B1 and B2 have
been found. Now we do not introduce the fictitious su-
perconducting loop, and instead calculate carefully all
the changes to the magnetic field energy during virtual

displacements. Now the current around the perimeter of
the permanent magnet is fixed to I as its magnetisation
is assumed to be constant. We can still use the previous
expressions for the magnetic field energy if we consider
the distance h between the plates to be a variable:

Wf =
πd2h

8µ0
[B2

1+3B2
2 ], B1 = 3B2 =

3Iµ0

4h
⇒ Wf =

3µ0πd
2I2

32h
.

In addition to the change of the magnetic field energy,
we also need to take into account the energy of the per-
manent magnet in the magnetic field, ´

Wm = −mB1 = −π

4
d2I · 3Iµ0

4h
= −2Wf ,

hence the total energyW = −Wf . Nowwe can find force
as F = −dW

dh =
dWf

dh , yielding the same result as before.
Notice that if we didn’t take into account the energy of
the dipole then we would have obtained the correct an-
swer by modulus, but with a wrong sign — we would
have had repulsion instead of attraction of the plates.

a) B⃗ in the slit is homogeneous 0.2 pts
b) B⃗ in the permanent magnet is homog. 0.2 pts
c) B⃗ in slit and in perm. magn. is normal 0.1 pts
e) I = (B1 +B2)h/µ0 0.1 pts
f) π

4 d
2B1 = π

4 (D
2 − d2)B2 0.1 pts

g) B2 = Iµ0/4h 0.1 pts
h) B1 = 3Iµ0/4h 0.1 pts
i)Wf = π

8µ0
[d2B2

1 + (D2 − d2)B2
2 ]h 0.1 pts

j)Wm = −Wf 0.2 pts
k) F = dW

dh 0.1 pts
l) 3π

32 J
2µ0d

2 0.1 pts
m) F ≈ 210N. 0.1 pts

Remark: those who do not take into account the energy
of the dipole will be given zero points for j), k), l), andm).

Part C: Model of ferromagnetic and anti-
ferromagnetic materials.

(C.1) Since the task is about finding only one configura-
tion of dipoles, we can just try looking for configurations
satisfying the requirements. The simplest approach is to
start construction with the chain of magnets described
in part A(d): if all the dipoles are directed parallel to
each other and parallel to the chain, the system is obvi-
ously in equilibrium. Now, two such chains can be par-
allel to each other, and they can be also antiparallel. In
both cases, each of the balls is in a stable equilibrium
in terms of rotations. Indeed, each of the balls from the
left and from the right contribute the field B⃗1 = x̂ µ0m

2πδ3 ,
while each of the balls from above and below contribute
B⃗2 = ± 1

2 B⃗1, where x̂ denotes a horizontal unit vector; ’+´
corresponds to antiparallel rows, and ’−´ — to parallel
rows. SinceB2 < B1, the sum of the four contributions is
always pointing in the direction of x̂ which ensures the
rotational stability of the magnet. Attraction force be-
tween two neighbouring rows is contributed only by the
vertical nearest-neighbour pairs of balls, so we can just
calculate only the interaction force between two such
magnets. If two such balls were to be at distance y, the
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interaction energy would be W = ±µ0m
2

4πy3 so that the y-
directional force Fy = dW

dy = ∓ 3µ0m
2

4πy4 . Thismeans that the
two balls attract if they are antiparallel and repel other-
wise. This brings us to the conclusion that the ordermust
be antiferromagnetic, shown below in the sketch.

The work needed to pull out one of the magnets is eas-
ily found as its interaction energy with the four near-
est neighbours, with minus sign, i.e. W = B⃗ · m⃗, where
B⃗ = 2B⃗1 + 2B⃗2 = 3µ0m

2πδ3 x̂ so thatW = 3µ0m
2

2πδ3 = 29mJ.

a) Fig: left and right parallel magnets attract 0.1 pts
b) Fig: top and bottom antipar. magn. attract 0.1 pts
c) B⃗ from the 4 neighbours ∥ m⃗ ⇒ no torque 0.1 pts
d) correctly marked 12 arrows 0.1 pts
e) antiferromagnetic 0.1 pts
f)W = B⃗ · m⃗ 0.1 pts
g)W = 3µ0m

2

2πδ3 0.1 pts
h)W = 29mJ 0.1 pts

Remark: no marks for d) if any of the magnets has a
wrong direction or has no arrow.
(C.2) Now we need to repeat the steps done for the pre-
vious question, with the only difference in the mutual
placement of the magnets. Also, each of the magnets
of the top row interacts now with two magnets of the
bottom row with the three magnets forming a equilat-
eral triangle. Since we’ll be going to use virtual displace-
ment method, we consider the interaction of three mag-
nets forming an isosceles triangle as shown in the figure;
while the base of the triangle remains fixed during vir-
tual displacements, the length of the sides l will change.

First we need an expression of themagnetic field caused
by the two bottom magnets at the centre of the topmost
magnet. Due to symmetry, this field must be horizontal;

we can use the formula provided in the problem text for
finding it. The dipole moment of the left-bottom magnet
needs to be divided into components parallel and per-
pendicular to the radius vector drawn from its centre
to the centre of the topmost magnet, m∥ = m cosα and
m⊥ = m sinα. Hence, we can express the resultant x-
component of the magnetic field as

B⃗3x =
µ0

4πl3
(2m⃗∥ cosα− m⃗⊥ sinα) =

µ0m⃗

4πl3
(3 cos2 α− 1).

The magnetic field due to both magnets is therefore
2B3xx̂.
As the first thing, we can now analyse the stability of a

magnet with respect to rotations. As before, we assume
that the magnets in one single row are parallel to each
other, and the magnets at the two neighbouring rows
are either parallel or antiparallel to each other. In either
case, the rows at the top and at the bottom from a given
magnet are parallel to each other; let them be oriented
along x̂. Then, each row contributes 2B3xx̂ to the total
field at the position of our magnet. The total field has
also contributions B⃗4x = ± µ0

2πδ3 from the left and right
magnets; here ‘+’ corresponds to the ferromagnetic or-
der, and ‘−’ — to the antiferromagnetic order. Keeping
in mind that l = δ and cosα = 1

2 the total field is

B⃗5 = 4B⃗3x + 2B⃗4x =
µ0m

2πδ3

(
−1

2
± 2

)
x̂.

This is parallel to the given magnetic dipole for both ‘+’
and ‘−’, which ensures stability in any case.
With m⃗ = ±x̂m and y denoting the height of the isosce-

les triangle, the vertical component of the interaction
force of a magnet with a magnet in the bottom row can
be found as

F5y =
d
dy B⃗3 · m⃗ = ± dl

dy
d
dl

µ0m
2

4πl3

(
3δ2

4l2
− 1

)
= ∓ dl

dy
3µ0m

2

16πδ3
;

here we have used cosα = δ
2l and upon taking deriva-

tive, substituted l = δ. For this force to be attractive, we
need a minus sign which corresponds to the ferromag-
netic order (keep inmind that dl

dy > 0). Nowwe are ready
tomark the direction of the dipoles on the sketch, see the
figure below.

The work needed to pull out a magnet is found simi-
larly to the part (C.1):

W = B⃗5 ·mx̂ =
3µ0m

2

4πδ3
= 15mJ.
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a) B⃗3x = µ0m⃗
4πl3 (3 cos2 α− 1) 0.2 pts

b) B⃗4x = ± µ0

2πδ3 0.1 pts
c) B⃗5 = 4B⃗3x + 2B⃗4x 0.1pts
d) B⃗5 = µ0m

2πδ3

(
− 1

2 ± 2
)
x̂. 0.1 pts

e)F5y = d
dy B⃗3 · m⃗ 0.1 pts

f) F5y = ∓ dl
dy

3µ0m
2

16πδ3 0.1 pts
g) F5y attractive 0.1 pts
d) correctly marked 12 arrows 0.1 pts
e) ferromagnetic 0.1 pts
g)W = 3µ0m

2

4πδ3 0.1 pts
h)W = 15mJ 0.1 pts

Remark: ± signs are not required as long as the correct
sign corresponding to the ferromagnetic order are used:
meaning, + sign in f) and - sign in d).


