

MS1-1

Zero-length springs and slinky coils – Marking Scheme

Part A: Statics

A.1	First method:	
	realized that $\frac{\Delta y}{\Delta l} = \frac{L}{L_0}$	0.2 pts
	realized that $L = \frac{F}{k}$	0.1 pts
	mentioned that $\Delta y = \Delta l$ if $F < kL_0$	0.1 pts
	correct result	0.1 pts
	Second method:	
	realized $k^* = k \frac{L_0}{\Delta l}$	0.2 pts
	mentioned that $\Delta y = \Delta l$ if $F < kL_0$	0.1 pts
	used $F - F_0 = k^* (\Delta y - \Delta l)$	0.1 pts
	correct result	0.1 pts
A.2	used $F(x) = \frac{kL_0}{\Delta l} x$	0.1 pts
	used $\Delta W = \int_{\Delta l}^{\Delta l_2} \frac{kL_0}{\Delta l} x dx$ (if $\Delta W = \frac{kL_0}{\Delta l} (\Delta y - \Delta l)^2$ – no pts.)	0.3 pts
	correct result	0.1 pts
A.3	calculating $l_{\scriptscriptstyle 0}$, the length of the closed turns	0.2 pts
	correct result for $l_{\scriptscriptstyle 0}$	0.3 pts
	realized $F(l) = Mg \frac{l}{L_0}$	0.3 pts

Theory IPhO 2019

MS1-2

expressed $dy = \frac{Mg}{kL_0^2}ldl$	0.2 pts
used $H=l_0+\int\limits_{l_0}^{L_0}\frac{Mg}{kL_0^2}ldl$	0.3 pts
(if assumed $l_0^{}=0\!:$ 0.1 pts)	
correct result expressed using the required variables	0.7 pts
(if assumed $l_0=0$: 0.4 pts)	
correct result but not expressed using the required variables	0.4 pts
(if assumed $l_0=0\!:$ 0.1 pts)	

Part B: Dynamics

B.1	used $H(l) = \frac{l^2}{2l_0} + \frac{l_0}{2}$	0.3 pts
	the contribution of element dl to the center of mass:	0.2 pts
	$\left(\frac{l^2}{2l_0} + \frac{l_0}{2}\right) \frac{Mdl}{L_0}$	
	$H_{\rm cm} = \frac{1}{M} \left[\frac{l_0}{2} \alpha M + \int_{l_0}^{L_0} H(l) dm \right]$	0.6 pts
	(first term 0.3, second term 0.3)	
	correct calculation of $H_{\rm cm} = L_0 \left[\frac{1}{6\alpha} - \frac{\alpha^2}{6} + \frac{\alpha}{2} \right]$	0.4 pts
	(if assumed $l_0=0$: 0.3 pts)	
	found the displacement of the center of mass:	0.2 pts
	$\Delta H = H_{\rm cm} - \frac{L_0}{2}$	

Theory IPhO 2019

MS1-3

	used $\frac{g}{2}t_c^2 = H_{\rm cm} - \frac{L_0}{2}$	0.2 pts
	correct result expressed using the required variables	0.5 pts
	correct result but not expressed using the required variables	0.4 pts
	numerical value of time	0.1 pts
	Another method:	
	Use A,B from B.2 and write	
	$t = \int_{l_0}^{L_0} \frac{dH(l)}{\sqrt{Al+B}}$	
	0.4 pts – both boundaries of integration	
	0.4 pts – $dH(l)$, dl – no pts	
	0.2 pts - 1/v	
	1.4 pts if correct computation of integration leading to a correct result expressed with required variables, 1.3 pts expressed with wrong variables	
B.2	Default method – work of external force equals the change in kinetic energy	
	calculated the position of the upper part ($l < l^{\prime} < L_{\!\scriptscriptstyle 0}$) before the	0.2 pts
	spring is released, used $H(l') = \frac{{l'}^2}{2l_0} + \frac{l_0}{2}$	
	$H_{cm-upper} = \frac{L_0}{M(L_0 - l)} \int_{l}^{L_0} H(l') dm = \frac{L_0}{M(L_0 - l)} \int_{l}^{L_0} \left(\frac{l'^2}{2l_0} + \frac{l_0}{2}\right) \frac{Mdl'}{L_0}$	0.3 pts
	if using M instead of $\frac{M(L_0-l)}{L_0}$: only 0.1 pts	
	found $H_{cm-upper} = \frac{L_0^2 + L_0 l + l^2}{6 l_0} + \frac{l_0}{2}$	0.5 pts

Theory IPhO 2019

MS1-4

	found the position of the center of mass of the moving part:	0.3 pts
	$H_{cm-upper-f} = \frac{l^2}{2l_0} + \frac{l_0}{2} + \frac{1}{2}(L_0 - l)$	
	(first two terms – 0.1 pts, third term – 0.2 pts)	
	$\Delta H_{cm-upper} = H_{cm-upper} - H_{cm-upper-f} = \frac{(L_0 - l)(L_0 + 2l)}{6l_0} - \frac{1}{2}(L_0 - l)$	0.3 pts)
	(finding the difference – 0.1 pts, result for the difference – 0.2 pts)	
	understood that the external force is Mg	0.3 pts
	(any other expression – 0 pts)	
	Using $Mg\Delta H_{cm-upper} = \frac{M(L_0-l)}{2L_0}v^2$	0.3 pts
	obtained $v_{upper-f}^2 = \frac{2g}{3\alpha}l + \frac{L_0g}{3\alpha} - L_0g$	0.3 pts
	Alternative method, using momentum and impulse on part I:	
	Realized that that $F = Mg$	0.3 pts
	Wrote that $Fdt=dp$	0.3 pts
	Realized that $dp = mdv + vdm$	0.6 pts
	(0.3 pts per term)	
	Realized that $vdt=dy-dl$	0.4 pts
	(0 pts if $vdt = dy$)	
	Getting a differential equation for v^2	0.3 pts
	Substituting $v^2 = Al + B$	0.2 pts
	Comparing coefficients to get A, B (0.2 pts each)	0.4 pts
	Other methods: There are other ways to solve this part	1.3 pts
	Finding A and B without deriving $v_{\rm I}(l) = \sqrt{Al + B}$	
B.3	realized that the velocity decreases in time when a stationary part still exists	0.1 pts

MS1-5

in case a student gets $A < 0$: 0.1 pts for the opposite conclusion	
substituted $l=l_0$ to find $v_{\rm I}(l_0)=\sqrt{Al_0+B}$	0.1 pts
used conservation of momentum (plastic collision) to find correct result	0.3 pts
$v_{min} = rac{m_{top}v(l_0)}{M}$	

Part C: Energetics

C.1	an equation relating ${\it Q}$ and ${\it W}$ (without gravitational energy)	0.4 pts
	use $dW = \frac{kL_0}{2dl} \left(\left(\frac{1}{l_0} ldl \right)^2 - dl^2 \right) = \frac{kL_0}{2} \left(\frac{l^2}{l_0^2} - 1 \right) dl$	0.4 pts
	calculated the elastic energy of the spring: $W = \int\limits_{l_0}^{L_0} \frac{kL_0}{2} \bigg(\frac{l^2}{l_0^2} - 1\bigg) dl$	0.4 pts
	correct result $W = MgL_0 \frac{(1-\alpha)^2(2\alpha+1)}{6\alpha}$	0.3 pts