
Wiedemann-Franz law – Appendix 

 

 

We will use a simple model to analyze the heat transport through the rod. A heater is suppling power 0P  

at one end. At any given point 
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 where P  is the heat current at point x . Ideally, 𝑃T should 

be constant along the rod. However, there are two mechanism that modify this: (a) loss of power that is 

used to change the temperature of the material; (b) loss of power to the environment, leading to 
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, where pc   is the specific heat,    the density, K  the radial heat 

loss parameter per unit length, and 𝑇0 the environment temperature. 

  
 

The time scale of the heating process is 2:30 minutes, so we get to 95% of final value after 7:30 minutes, 

as shown in the figure above. However, this is again only true for an ideal system properly coupled to a 

heat reservoir but otherwise insulated. In our system, the connection to the heat reservoir is not ideal, 

and we have radial heat loss. We model this system as a rod connected via thermal resistance to a short 

aluminum rod (representing the pot and heat sink material in the real setup) that is connected to a 

water reservoir. In the figure below we have simulated the realistic heating process, and compared it 

with the measured data. 



  
 

During the experiment we will see the numbers that are extracted from this simulation match our 

experimental results. 

Part A 

For an ideal system, a rod connected only to an ideal reservoir, we expect to get a constant temperature 

gradient: 
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Let us now analyze the effects of the two mechanisms causing deviation from this ideal behavior. An 

important point here is that loss mechanisms affect the heat flux, but there is always a local relation 

between the temperature gradient and the local heat. Hence, the temperature gradient close to the 

heater is set by input power P , while the gradient close to the reservoir side will be set by power 

lossP P− . For this reason, the slope will be corrected by (to first order in the gradient): 
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The figure below demonstrates that this approximation is very accurate for our system: 



  

 

We see that with these two correction the accuracy is better than 1%, compared with 8% without 

correction, which is an order of magnitude improvement. 

 

Part B: cooling – heating – cooling cycle 

The purpose of this section is to obtain the heat loss and heat capacity of the rod in order to correct the 

8% error in the previous section result. To do so, we will disconnect the rod from the heat reservoir, 

isolate its free end, and heat it up to approximately the temperature of the last section. In this section 

we do not aim for a 1% accuracy, because it is a first order correction for our result of the heat 

conductance, which is the main point of the experiment. 

We will perform a cooling-heating-cooling cycle in order to obtain the heat capacity and the heat loss. 

Panel (a) - Simulation 

 

Panel (b) – A typical measurement 

 
Panel (a) – a simulation of the cooling-heating-cooling cycle. Panel (b) – a typical cycle as measured in a 

real system. The different colors correspond to different thermometers. 

 

 



The average reading (over all thermometers) is in principle the most suitable quantity for the analysis, 

since it approximately accounts for the total energy given to the rod by the heater. Unfortunately, we 

believe that it is technically difficult to write the full set of thermometer readings fast enough on paper, 

and we do not want the student to invest a lot of effort in this task. To a very good approximation the 

temperature in the center of the rod is very close to the average temperature, up to some small time 

delay. Hence, we hint that the student should use the temperature in the center (average of readings of 

thermometers T4 and T5).  

There are a number of ways to use this data in order to extract the two quantities , lossC P . We propose 

two approaches: (a) based on the slope of the 𝑇(𝑡) measurements during the cooling and heating 

process. In the former, 
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Hence in the latter: 
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allowing one to extract 𝑐𝑝 ⋅ 𝑚. 

(b) Alternatively, the total heat input during the heating time interval, 𝑃in ⋅ Δ𝑡Heating is related to the 

Δ𝑇Heating, the difference between the vertical shift between the linear cooling 𝑇(𝑡) graphs before and 

after the heating (see figure below) through 𝑃inΔ𝑡Heating = 𝑐𝑝𝑚Δ𝑇Heating. Since the slope during the 

relatively short heating time interval is not needed here, this method is slightly more accurate. However, 

both approaches will be accepted. 

 

Average over all thermometers: 
 

Average over thermometer 4,5 
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Both methods reproduce the heat conductivity within 1%,386
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Using this heat capacity we can get the total heat loss 𝑃𝑙𝑜𝑠𝑠 = −𝑐𝑝 ⋅ 𝑚 ⋅
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Note that a significant contribution to the heat capacity originates from the insulation and other 

components in the system, and for this reason we instruct the students to use an effective mass that is 

larger than the real mass. This matters only in order to get proper pc , but it is irrelevant for the rest of 

the experiment where we only need pc m  . 

Depending on the method, the result of C  will deviate by 5% . This will produce less than ~ 0.5%  

negligible error in the result of the heat conductivity. 

 


