

MS1-1

Optical Measurements – Marking Scheme

Part A: The refractive index of a disk

A.1	drawing diagram:		
	The ruler, beam, disk, and $lpha$ appear in the diagram	0.2 pts	
	(1 missing item: 0.1 pts; more than 1 missing items: 0 pts)		
	the incoming beam parallel to the diameter through 0°	0.1 pts	
	(can be identified by the position of α)		
	ruler is tilted with respect to the beam		
	at least 10 measurement points	0.3 pts	
	(for 8-9 points: 0.2 pts; for 6-7 points: 0.1 pts; less: 0 pts)		
	(without Δs: 10 points: 0.2 pts; 8-9 points: 0.1 pts; less: 0 pts)		
	full 15-75 degrees region	0.2 pts	
	(25-65 degrees region: 0.1 pts)		
	varying $\Delta \delta$ according to the spot size on the screen	0.1 pts	
A.2	calculated eta from δ and $lpha$ for all rows in the table	0.1 pts	
	calculated $\sin lpha$ and $\sin eta$ for all rows in the table	0.1 pts	
	at least 8 measured points appear in the graph	0.1 pts	
	the data covers at least 75% of each coordinate length	0.1 pts	
	there are labels in each axis	0.1 pts	
	plotted regression line and calculate slope	0.1 pts	
	value of $n: 1.50 \le n \le 1.53$	0.3 pts	
	if $1.48 \le n < 1.50$ or $1.53 < n \le 1.55$: 0.1 pts		
	value of $0.005 \le \Delta n \le 0.03$, if $1.45 \le n \le 1.58$; otherwise: 0 pts	0.1 pts	
A.3	The graph includes a minimum angle of δ	0.1 pts	
	labels in each axis and error bars of $\Delta \delta$ appear	0.1 pts	
	value of δ_{\min} : $336^{\circ} \le \delta_{\min} \le 338^{\circ}$	0.2 pts	

Experiment IPhO 2019

MS1-2

	$335^{\circ} \le \delta_{\min} < 336^{\circ}$ or $338^{\circ} < \delta_{\min} \le 339^{\circ}$: 0.1 pts		
	value of $\alpha(\delta_{\min})$ $49^{\circ} \le \alpha(\delta_{\min}) \le 51^{\circ}$	0.1 pts	
A.4	Stated that $rac{d\delta}{dlpha}=0$	0.1 pts	
	found that $\frac{d\beta}{d\alpha} = \frac{1}{N-1}$ ($N = 3$: full points)		
	Snell's Law $\cos \alpha = \frac{n \cos \beta}{N-1}$ or eq. ($N=3$: full points)	0.2 pts	
	get $\frac{1}{n^2} = \sin^2 \beta + \frac{\cos^2 \beta}{(N-1)^2}$ or eq. with α ($N = 3$: full points)		
A.5	figure includes ray path and measured angles	0.1 pts	
	measurement of $\phi_j = \alpha + j\gamma$ for $j = 0,1,2,3$	0.3 pts	
	only for $j = 0.3$: 0.2 pts		
	only for $j = 0,1,2:0.2$ pts		
	only for $j = 0.2$: 0.1 pts		
	plotted a graph of ϕ_j vs. j	0.1 pts	
	found value for β (or γ)		
	value of n : $1.510 \le n \le 1.520$	0.2 pts	
	$1.505 \le n < 1.510$ or $1.520 < n \le 1.525$: 0.1 pts		
A.6	for $N=4$:		
	measurement of $\phi_j = \alpha + j\gamma$ for $j = 0,1,2,,6$ (7 values)	0.3 pts	
	only for $j=0$ and $j=5$ or 6: 0.2 pts		
	only for $j=0$ and $j=3:0.1$ pts		
	plotted graph of ϕ_j vs. j	0.1 pts	
	found value for β (or γ)	0.1 pts	
	value of n : $1.510 \le n \le 1.520$	0.2 pts	

MS1-3

$1.505 \le n < 1.510$ or $1.520 < n \le 1.525$: 0.1 pts	
For $N=5$:	
measurement of $\phi_j = \alpha + j\gamma$ for $j = 0,1,2,,6$ (7 values)	0.3 pts
measurement of $\phi_j=\alpha+j\gamma$ for $j=0$ and $j=5$ or 6	0.2 pts
measurement of $\phi_j=lpha+j\gamma$ for $j=0$ and $j=4$	0.1 pts
plotted graph of ϕ_j vs. j	0.1 pts
found value for β (or γ)	0.1 pts
value of n : $1.510 \le n \le 1.520$	0.2 pts
$1.505 \le n < 1.510$ or $1.520 < n \le 1.525$: 0.1 pts	
value of $\langle n \rangle$: $1.512 \le \langle n \rangle \le 1.518$	0.1 pts

Part B: The parameters of a diffraction grating

In part B, the final results of each student should be rescaled relative to the reference of $\lambda/d=0.400$, according to the table supplied separately, using the ID of the grating recorded by the student in his/her answer sheet.

B.1	Plotted a diagram with all of the requested items	0.1 pts
	Distance of the diffraction grating from the screen > 45 cm	0.1 pts
	for $m=1$ value of λ/d : $0.395 \le \lambda/d \le 0.405$	0.2 pts
	if $0.39 \le \lambda / d < 0.395$ or $0.405 \le \lambda / d < 0.41$: 0.1 pts	
	for $m=2$ value of λ/d : $0.395 \le \lambda/d \le 0.405$	0.3 pts
	if λ/d : $0.39 \le \lambda/d < 0.395$ or $0.405 \le \lambda/d < 0.41$: 0.1 pts	
B.2	First method – using extremum:	
	plotted the diagram with all requested items	0.1 pts
	the ray is definitely not perpendicular to the grating	0.1 pts
	the grating angle changes between $m=3$ and $m=4$ or $m=4$ maximum is backwards	0.1 pts
	showed that the minimal angle is at $\alpha = \theta/2$	0.5 pts

MS1-4

for extremum calculation with error: 0.4 pts	
value of $\theta_{3\min}$: $73.0^{\circ} \le \theta_{3\min} \le 74.5^{\circ}$ or $36.5^{\circ} \le \alpha_{3\min} \le 37.25^{\circ}$	0.3 pts
if $72.0^\circ \le \theta_{3 \mathrm{min}} \le 75.5^\circ$ or $36.0^\circ \le \alpha_{3 \mathrm{min}} \le 37.75^\circ$: 0.1 pts	
(around $ heta_{min}$ satisfying $2\sinrac{ heta_{min}}{2}=mrac{\lambda}{d}$ for the grating ID;	
$\theta_{3min} = 73.74^{\circ} + 214.86^{\circ} \times \Delta; \Delta = \lambda/d - 0.4$	
for $m = 3$ value of λ / d : $0.395 \le \lambda / d \le 0.405$	0.2 pts
if λ/d : $0.39 \le \lambda/d < 0.395$ or $0.405 \le \lambda/d < 0.41$: 0.1 pts	
value of $\theta_{4 \min}$: $105.5^\circ \le \theta_{4 \min} \le 107.0^\circ$ or $52.25^\circ \le \alpha_{4 \min} \le 53.5^\circ$	0.3 pts
if $104.0^\circ \le \theta_{4\mathrm{min}} \le 108.5^\circ$ or $52.0^\circ \le \alpha_{4\mathrm{min}} \le 54.25^\circ$: 0.1 pts	
(around θ_{4min} satisfying $2\sin\frac{\theta_{min}}{2}=m\frac{\lambda}{d}$ for the grating ID;	
$\theta_{4min} = 106.26^{\circ} + 381.97^{\circ} \times \Delta; \Delta = \lambda/d - 0.4$	
for $m = 4$ value of λ / d : $0.395 \le \lambda / d \le 0.405$	0.2 pts
if λ/d : $0.39 \le \lambda/d < 0.395$ or $0.405 \le \lambda/d < 0.41$: 0.1 pts	
Alternative method – measuring $lpha$ directly:	
plotted the diagram with all requested items	0.1 pts
measuring $lpha$	0.3 pts
for $m = 3$ value of λ / d : $0.395 \le \lambda / d \le 0.405$	0.7 pts
if λ/d : $0.39 \le \lambda/d < 0.395$ or $0.405 \le \lambda/d < 0.41$: 0.3 pts	
for $m=4$ value of λ/d : $0.395 \le \lambda/d \le 0.405$	0.7 pts
if λ/d : $0.39 \le \lambda/d < 0.395$ or $0.405 \le \lambda/d < 0.41$: 0.3 pts	
	i e

Part C: The refractive index of a triangular prism

C.1	understood that $\delta_{ m min}=\delta_{ m sym}$, or independently obtained	0.4 pts
	$49.5^{\circ} \le \delta_{\text{sym}} \le 51.5^{\circ}$ in C.2	
C.2	measured δ_{\min} for at least one prism angle: $49.5^{\circ} \le \delta_{\min} \le 51.5^{\circ}$	0.3 pts
	measured δ_{\min} for two more prism angles: $49.5^{\circ} \le \delta_{\min} \le 51.5^{\circ}$	0.3 pts
	distance between prism and screen larger than 120 cm	0.1 pts

Experiment IPhO 2019

MS1-5

finding $\langle \delta_{ ext{min}} angle$	$50.30^{\circ} \le \left< \delta_{\min} \right> \le 50.70^{\circ}$	0.3 pts
making correc	ct calculation of $\Delta \langle \delta_{\min} \rangle$, $\Delta \langle \delta_{\min} \rangle \leq 0.1^\circ$	0.1 pts
finding n :	$1.641 \le n \le 1.644$	0.4 pts
	$1.640 \le n < 1.641$ or $1.644 < n \le 1.645 : 0.3$ pts	
	$1.639 \le n < 1.640$ or $1.645 < n \le 1.646$: 0.2 pts	
	$1.637 \le n < 1.639$ or $1.646 < n \le 1.648 : 0.1$ pts	
finding Δn usi	ing correct $\Delta \delta_{ m min}$, $\Delta n \leq 0.001$	0.1 pts