| Schülercode | | | | | |-------------|--|---|---|---| | | | 1 | 1 | 1 | Magnetische Fallen aus parallelen Dipol-Linien und ihre Verwendung bei der Beobachtung von Erdbeben und Vulkanen (10 Punkte) #### A. EIGENSCHAFTEN DER PDL-FALLE # 1. Bestimmung der Magnetisierung M des Magneten (2,5 Pkt.) | Frage | Antwort | Punkte | |-----------------|---|--------| | A.1
0,1 pt. | Miss den Nullwert B_0 des Teslameters, also den angezeigten Wert ohne Magneten in der Nähe. Dieser Wert muss von allen folgenden Messungen abgezogen werden. B_0 = | | | A.2
1,15 pt. | Miss das Magnetfeld B als Funktion von x im Nahfeldbereich ($7 \le x \le 16$ mm). Dabei wird die Position x von der Mitte des Magneten gemessen. Schreibe deine Ergebnisse auf und erstelle einen passenden Graphen im Antwortbogen. | | | A.3
0,75 pt. | Bestimme mit Hilfe deiner experimentellen Daten den Wert des Exponenten p . $p = \frac{1}{p}$ | | |-----------------|---|--| | A.4
0,5 pt. | Bestimme die Magnetisierung M des Magneten. | | **Experiment** AE2 Germany M = ## 2. Magnetische Levitation und magnetische Suszeptibilität χ (1,0 Pkt.) | Frage | Antwort | Punkte | |----------------|---|--------| | A.5
0,1 pt. | Platziere vorsichtig einen Graphitstab des Typs HB/0.5 und einer Länge von 8 mm in der Falle. Miss die Höhe y_0 in der der Stab schwebt (vgl. Abb. 7a). Hinweis: Verwende das gegebene Einschublineal (Abb. 7b). Drücke dazu das Lineal auf die Magneten, um die Position des Graphitstabs abzulesen. y_0 = | | | A.6
0,8 pt. | Verwende das Ergebnis aus Aufgabe A.5, um die magnetische Suszeptibilität χ des Graphitstabes zu bestimmen. | | | A.7
0,1 pt. | Um welche Art von magnetischem Material handelt es sich bei Graphit?
Entscheide dich für eine der Möglichkeiten: (i) Ferromagnetisch; (ii)
Paramagnetisch; oder (iii) Diamagnetisch? | | ## 3. Schwingung im Kamelhöckerpotential und magnetische Suszeptibilität χ (1 Pkt) | Frage | Antwort | Punkte | |----------------|---|--------| | A.8
0,2 pt. | Betrachte die Schwingung eines "HB/0.5" Graphitstabes einer Länge von $l=8$ mm. Beschränke dich auch kleine Amplituden, also $A<4$ mm. Bestimme die Schwingungsperiode. Vernachlässige dabei die Dämpfung der Schwingung. | A.9
0,8 pt. | Schwingungsmethode. | | | | | | | | v = | | | | χ = | | ## <u>4. Oszillatorgütefaktor Q und Abschätzung der Viskosität μ_A von Luft (3 Pkt.)</u> | Frage | Antwort | Punkte | |-----------------|---|--------| | A.10
0,5 pt. | Dazu musst du die Dämpfungszeitkonstante $ au$ der Schwingung bestimmen. Skizziere, wie du $ au$ auf <i>möglichst einfache</i> Art messen kannst. | | | A.11
1,5 pt. | Untersuche die Schwingungsdämpfung für Stäbe mit verschiedenen Durchmessern aber einer festen Länge von 8 mm. Miss die Dämpfungszeitkonstante τ für jeden der Stäbe. | | | A.12 | Bestimme die Viskosität μ_A von Luft. | | |---------|---|--| | 1,0 pt. | | | | | | | | | | | | | μ_A = | | #### **B.** ANWENDUNGEN ALS SENSOR #### 5. PDL-Falle als Seismograph (0,5 Pkt.) | Frage | Antwort | Punkte | |----------------|--|--------| | B.1
0,2 pt. | Welchen Durchmesser hast du gewählt? | | | B.2
0,3 pt. | Berechne die Beschleunigungsschwelle a_n eines Seismographen mit dem von dir gewählten Stab. | | #### 6. PDL-Falle als Neigungsmesser (2 Pkt.) | Frage | Antwort | | |----------------|---|--| | B.3
0,5 pt. | Leite theoretisch einen Ausdruck für die Verschiebung Δ_Z in Abhängigkeit von der Gewindehöhe S und der Anzahl N der Schraubendrehungen her. | | | Experiment | AE2 | |------------|-------| | Germany | 7 (2 | | | | | | ıl II | i | |--|-------|---| | | ıl II | i | | | il II | i | | | ıl II | i | | | il II | i | | | ıl II | i | | | il II | i | | | ıl II | i | | | il II | i | | | ıl II | i | | B.4
1,25 pt. | Bestimme durch langsames Drehen der Schraube die Verschiebung Δ_Z des Stabes als Funktion der Anzahl der Drehungen N . Bestimme daraus die Gewindehöhe S . | | | |-----------------|---|--|--| S = | | | | B.5 | Zum besseren Ablesen sollte der Stab bei Änderung der Bodenneigung | | | | 0,25 pt. | möglichst schnell eine Gleichgewichtsposition einnehmen und nicht sehr lange schwingen. Wie groß ist folglich der ideale Oszillatorgütefaktor Q | | | | | eines Neigungsmessers? | | | | | | | | | | | | | | | Q = | | |