Schülercode				
		1	1	1

Magnetische Fallen aus parallelen Dipol-Linien und ihre Verwendung bei der Beobachtung von Erdbeben und Vulkanen (10 Punkte)

A. EIGENSCHAFTEN DER PDL-FALLE

1. Bestimmung der Magnetisierung M des Magneten (2,5 Pkt.)

Frage	Antwort	Punkte
A.1 0,1 pt.	Miss den Nullwert B_0 des Teslameters, also den angezeigten Wert ohne Magneten in der Nähe. Dieser Wert muss von allen folgenden Messungen abgezogen werden. B_0 =	
A.2 1,15 pt.	Miss das Magnetfeld B als Funktion von x im Nahfeldbereich ($7 \le x \le 16$ mm). Dabei wird die Position x von der Mitte des Magneten gemessen. Schreibe deine Ergebnisse auf und erstelle einen passenden Graphen im Antwortbogen.	

A.3 0,75 pt.	Bestimme mit Hilfe deiner experimentellen Daten den Wert des Exponenten p . $p = \frac{1}{p}$	
A.4 0,5 pt.	Bestimme die Magnetisierung M des Magneten.	

Experiment

AE2

Germany

M =

2. Magnetische Levitation und magnetische Suszeptibilität χ (1,0 Pkt.)

Frage	Antwort	Punkte
A.5 0,1 pt.	Platziere vorsichtig einen Graphitstab des Typs HB/0.5 und einer Länge von 8 mm in der Falle. Miss die Höhe y_0 in der der Stab schwebt (vgl. Abb. 7a). Hinweis: Verwende das gegebene Einschublineal (Abb. 7b). Drücke dazu das Lineal auf die Magneten, um die Position des Graphitstabs abzulesen. y_0 =	
A.6 0,8 pt.	Verwende das Ergebnis aus Aufgabe A.5, um die magnetische Suszeptibilität χ des Graphitstabes zu bestimmen.	
A.7 0,1 pt.	Um welche Art von magnetischem Material handelt es sich bei Graphit? Entscheide dich für eine der Möglichkeiten: (i) Ferromagnetisch; (ii) Paramagnetisch; oder (iii) Diamagnetisch?	

3. Schwingung im Kamelhöckerpotential und magnetische Suszeptibilität χ (1 Pkt)

Frage	Antwort	Punkte
A.8 0,2 pt.	Betrachte die Schwingung eines "HB/0.5" Graphitstabes einer Länge von $l=8$ mm. Beschränke dich auch kleine Amplituden, also $A<4$ mm. Bestimme die Schwingungsperiode. Vernachlässige dabei die Dämpfung der Schwingung.	
A.9 0,8 pt.	Schwingungsmethode.	
	v =	
	χ =	

<u>4. Oszillatorgütefaktor Q und Abschätzung der Viskosität μ_A von Luft (3 Pkt.)</u>

Frage	Antwort	Punkte
A.10 0,5 pt.	Dazu musst du die Dämpfungszeitkonstante $ au$ der Schwingung bestimmen. Skizziere, wie du $ au$ auf <i>möglichst einfache</i> Art messen kannst.	
A.11 1,5 pt.	Untersuche die Schwingungsdämpfung für Stäbe mit verschiedenen Durchmessern aber einer festen Länge von 8 mm. Miss die Dämpfungszeitkonstante τ für jeden der Stäbe.	

A.12	Bestimme die Viskosität μ_A von Luft.	
1,0 pt.		
	μ_A =	

B. ANWENDUNGEN ALS SENSOR

5. PDL-Falle als Seismograph (0,5 Pkt.)

Frage	Antwort	Punkte
B.1 0,2 pt.	Welchen Durchmesser hast du gewählt?	
B.2 0,3 pt.	Berechne die Beschleunigungsschwelle a_n eines Seismographen mit dem von dir gewählten Stab.	

6. PDL-Falle als Neigungsmesser (2 Pkt.)

Frage	Antwort	
B.3 0,5 pt.	Leite theoretisch einen Ausdruck für die Verschiebung Δ_Z in Abhängigkeit von der Gewindehöhe S und der Anzahl N der Schraubendrehungen her.	

Experiment	AE2
Germany	7 (2

	ıl II	i
	ıl II	i
	il II	i
	ıl II	i
	il II	i
	ıl II	i
	il II	i
	ıl II	i
	il II	i
	ıl II	i

B.4 1,25 pt.	Bestimme durch langsames Drehen der Schraube die Verschiebung Δ_Z des Stabes als Funktion der Anzahl der Drehungen N . Bestimme daraus die Gewindehöhe S .		
	S =		
B.5	Zum besseren Ablesen sollte der Stab bei Änderung der Bodenneigung		
0,25 pt.	möglichst schnell eine Gleichgewichtsposition einnehmen und nicht sehr lange schwingen. Wie groß ist folglich der ideale Oszillatorgütefaktor Q		
	eines Neigungsmessers?		
	Q =		