The Extremum Principle
Solution

A. The Extremum Principle in Mechanics

Deduct 0.1 if units missing in final answer upto a maximum of 0.5 points

Consider a horizontal frictionless z-y plane
shown in Fig. 1. It is divided into two regions,
I and II, by a line AB satisfying the equation ;
xz = x;. The potential energy of a point parti- V- X
cle of mass m in region I is V' = 0 while it is ; T v
V' =V, in region II. The particle is sent from :

the origin O with speed v, along a line making | @

an angle ¢; with the z-axis. It reaches point P 4 l

in region II traveling with speed vy along a line 1 B >
that makes an angle 0, with the z—axis. Ignore
gravity and relativistic effects in this entire task -
T-2 (all parts). Figure 1
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Figure 1

(A1) Obtain an expression for v, in terms of m, v; and Vj . [0.2]

Solution:

From the principle of Conservation of Mechanical Energy

1 1
imvf = §mv§ +W

2V¢
v = (v] — >

0.1

)1/2
m 0.1

(A2) Express vy in terms of vq, #; and 6s. [0.3]

Solution:

At the boundary there is an impulsive force (¢ dV/dx) in the —z direction. Hence
only the velocity component in the z—direction vy, suffers change . The component in
the y—direction remains unchanged. Therefore

U1y = Ugy 0.2
v1 8in 0; = vy sin 6 0.1

We define a quantity called action A = m [ v(s)ds, where ds is the infinitesimal length along
the trajectory of a particle of mass m moving with speed v(s). The integral is taken over the
path. As an example. for a particle moving with constant speed v on a circular path of radius
R, the action A for one revolution will be 2rmRv. For a particle with constant energy E, it can
be shown that of all the possible trajectories between two fixed points, the actual trajectory is
the one on which A defined above is an extremum (minimum or maximum). Historically this
is known as the Principle of Least Action (PLA).

n

\* 1 //

N/



(A3) PLA implies that the trajectory of a particle moving between two fixed points in a region
of constant potential will be a straight line. Let the two fixed points O and P in Fig. 1
have coordinates (0,0) and (x0,yo) respectively and the boundary point where the particle
transits from region I to region II have coordinates (x1,a). Note 7 is fixed and the action
depends on the coordinate o only. State the expression for the action A(a). Use PLA to

obtain the the relationship between v; /v, and these coordinates.

Solution:
By definition A(«) from O to P is

A(a) = muiy/ 22 + o2 + mus/ (20 — 21)2 + (3o — @)?

Differentiating w.r.t. o and setting the derivative of A(a) to zero

V100 . V(Yo' — @)
(2f + )2 [(wo — 1)% + (yo — @)?]1/2

=0

o (w—a) (a2 4 o)
vy af(mo— L1)? + (yo = )12

Note this is the same as A2, namely v; sin§; = v sin .

(0.1 for first and 0.2 for second expression = 0.3 points)

B. The Extremum Principle in Optics

A light ray travels from medium I to medium
IT with refractive indices n; and n, respectively.
The two media are separated by a line parallel 1I
to the x-axis. The light ray makes an angle 7,
with the y-axis in medium I and 45 in medium II

YA

(see Fig. 2). To obtain the trajectory of the ray,
we make use of another extremum (minimum or

maximum) principle known as Fermat’s princi-
ple of least time.

icure ?
Ficure 2

Figure 2

(B1) The principle states that between two fixed points, a light ray moves along a path such
that the time taken between the two points is an extremum. Derive the relation between

sinz; and sini, on the basis of Fermat’s principle.

Solution:

The speed of light in medium I is ¢/n; and in medium IT is ¢/n,

where c is the speed of light in vacuum. Let the two media be separated
by the fixed line y = y;. Then time 7'(c) for light to travel from origin
(0,0) and (zg,y0) is

Tle) = mo(y/51 + o) /e + n{v/ (w0 — )2 + (yo — 11)%)/c
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(0.1 for first and 0.1 for second expression = 0.2 points)
Differentiating w.r.t. o and setting T'(«) to zero

no - na(yo — @) =)
(1 + )72 [(z0—a)? + (yo — n)?H?
N1 8N %7 = Ng SiN iy
[Note: Derivation is similar to A3. This is Snell’s law.]
Shown in Fig. 3 is a schematic sketch of the
path of a laser beam incident horizontally on N 0.0
a solution of sugar in which the concentration o O T =
of sugar decrcases with height. As a conse- \
quence, the refractive index of the solution also o Vo)
decreases with height. Figure 3: Tank of Sugar Solurion
Figure 3

Assume that the refractive index n(y) depends only on y. Use the equation obtained in B1
to obtain the expresssion for the slope dy/dz of the beam’s path in terms of ng and n(y).

Solution:

From Snell’s law ng siniy = n(y) sins
Then, d—y = —cot1
dz

(0.2 marks for negative sign.)
Given n(y) and 7, = 90°, so sinig = 1.

n

)
\/1+ij—§>2

(B3) The laser beam is directed horizontally from the origin (0,0) into the sugar solution at a

height yo from the bottom of the tank as shown. Take n(y) = ng — ky where ng and k
are positive constants. Obtain an expression for z in terms of y and related quantities.
You may use: [secfdfl = In(secf + tanf) + constant secd = 1/cosf or [ =

Vz?—1
In(z 4+ v/a? — 1) + constant.

Solution:
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Note 79 = 90° so sinig = 1.

Method I We employ the substitution

Ezno—ky

No

Let £ =secf. Then

-7;—0111(86(39 +tanf) =z +¢

Or METHOD I1
We employ the substition

ézno—ky
Ny

B~

/62

—k —k
o (e y+\/(n0—y—)2~1 = —%+ 1 )
k o g Moxﬁ_éontmuing

Considering the substitutions and boundary condition, z = 0 for y = 0 we obtain that
the constant ¢ = 0.
Hence we obtain the following trajectory:

SENN SN =
k No Mg

=— [ dx

(B4) Obtain the value of 2o, the point where the beam meets the bottom of the tank. Take yq

= 10.0 cm, ny = 1.50, £ = 0.050 cm™ (1 cm = 1072 m).
Solution:
Given 1y = 10 cm. ng = 1.5 k'=005an"
From (C3)
1/2
Mg no — ky no — ky ’
To=—In||—= ]+ s
k Mo no
Here y = —1p
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4
=30In [5 + 0.88}

=24.0 cm

(Full 0.6 for answer between 23.5 to 24.5) ,

N,

C. The Extremum Principle and the Wave Nature of Matter

We now explore if the two approaches, namely; Newton’s Second Law of Motion and the PLA,
can be connected by invoking the notion of the de Broglie wave associated with a moving
particle. For this we assume that a particle moving from O to P can take all possible trajectories
and we will seek a trajectory that depends on the constructive interference of de Broglic waves.

(C1) As the particle moves along its trajectory by an infinitesimal distance As, relate the change
A¢ in the phase of its de Broglie wave to the change AA in the action and the Planck
constant.

Solution:

From the de Broglie hypothesis
A— /\dB = h/mv

where A is the de Broglie wavelength and the other symbols have their usual meaning
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2)

Recall the problem from part A where the particle
traverses from O to P (see Fig. 4). Let an opaque
partition be placed at the boundary AB between the
two regions. There is a small opening CD of width
d in AB such that d < (zg — 1) and d < 7.
Consider two extreme paths OCP and ODP such
that OCP lies on the classical trajectory discussed in
part A. Obtain the phase difference A¢cp between
the two paths to first order.

Solution:

Consider the extreme trajectories OCP and ODP of (C1)
The geometrical path difference is ED in region I and C'F in region II.
This implies (note: d < (zo — 1) and d < 1)

2ndsinf, 2wdsin b,
A = —
$cp " 5
first expression 0.2, second expression 0.2, negative sign 0.2 = 0.6 points.

Also if negative sign missing then no further credit for the remaining part

2rmuidsint;  2mmusdsin O,
A¢cp = . — >

d
= 27Tm—(?)1 sin (91 — Vg sin 02)

h
=] (from A2 or Bl)

Thus near the clasical path there is invariably constructive interference.

5'/(,C,Z;f £ 1'(7//’/24‘—,7710@‘ — O,G “ _j ﬁ:’; o dZ‘ 7 U;_g’o 4. 524,94’;{;‘/

Matter Wave Interference

Consider an electron gun at O which directs a collimated beam of electrons to a narrow slit at
F in the opaque partition A;B; at x = x; such that OFP is a straight line.

0.6



P is a point on the screen at x = x (see Fig.
5). The speed in Iis v; = 2.0000 x 107 ms~?
and 6 = 10.0000°. The potential in region II is VA | Al 11
such that the speed v, = 1.9900 x 10" ms™'. ’ :
The distance zy — z; is 250.00 mm (1 mm = |
1073 m). Ignore electron-electron interaction. ‘P

F-,n"

-//2' ,*’?’I | 215000

W G—I_BL
X1

Xg
250 mm
Figure 5

Figure 5

(D1) If the electrons at O have been accelerated from rest, calculate the accelerating potential
Uy [0.3]

Solution:

1
qU, = ) mu? 0.2

9.11 x 1073 x 4 x 10"
5 J

= 2%x911x107'g
2x%x9.11x10"Y7

= 1.6 x 10-19 € ’/u %,[, ‘4¢w;/;>
= 1.139 x 10* eV (= 1100 eV) ,«,.5_,,.?_.,7
Uy =1.139%x10° V /;/; /00 —= ,//gpj 0.1
{

(D2) Another identical slit G is made in the partition A;B; at a distance of 215.00 nm (1 nm
= 107% m) below slit F (Fig. 5). If the phase difference between de Broglie waves ariving
at P from F and G is 27 3, calculate 5. [0.8]

Solution: Phase difference at P is

2ndsinf  2mwdsinf

Bop = X % 0.2

md . 9 ) )
= 2n(vy — 'UQ)T sin 10° = 2x 83 4{%,[[ naths W

B =513 )L if;ifl&’_/ 0.2
@




(D3) What is is the smallest distance Ay from P at which null (zero) electron detection maybe
expected on the screen? [Note: you may find the approximation sin(¢ + Af) = sinf +

A6 cos 6 useful] [1.2]
Solution:
y I A I
1 P
H N
T 4 b
215 nm N
. ; Q@
G b
S
B N
O Xl X ‘ ]
.'/ ~ \ <& \\t;
From previous part for null (zero) electron detection A¢ = 5.5 x 27 ‘!\0’@ ) Q(Z T3
e N~ R
B dsinf  muydsin(f + Ab) . ) $
| . = dJ. 7, ¢ 4 / »
L 5 2 df{ ZGARN
in 6
mvlc}lbsm _55 . f/
o e 7/ g
sin(f + A9) p— L 02
h
v . h 5.5
= —sinf — ——
Vo m ’U2d
= sin 10° — i,
- 1.99 1374.78 x 1.99 x 107 x x2.15 x 10-7

= 0.174521 — 0.000935

This yields A8 = —0.0036° 0, ’27 02
The closest distance to P is

Ay = (zo—z1)(tan(d + Af) — tan )

= 250(tan9.9964 — tan 10) o7
= —0.0162mm ~

e = Y 7~ /n 2 -/
= (<}16.2um L“Jéf‘ —=A7 o | @[Zf 0.2

(0.2 points deducted if calculation not done in radians)
The negative sign means that the closest minimum is below P.

Approximate Calculation for § and Ay
Using the approximation sin(f + Af) ~ sinf + Af cos 6
The phase difference of 5.5 x 27 gives

dsin 10° d(sin 10° + Af cos 10°) 5 ' .
mu — mu =5
Y h ? h [0.4 _l
From solution of the previous part Bk
dsin 10° dsin10°
mu; . — MUy ” =5.13




Therefore N T
mw% — 0.3700
This yields Af =~ 0.0036°

Ay = —0.0162mm = —16.2um as before

(D4) The electron beam has a square cross section of 500 nm x 500 nm and the setup is 2 m

long. What should be the minimum beam flux density I,;, (number of electrons per unit
normal area per unit time) if, on an average, there is at least one electron in the setup at
a given time?

Solution: The product of the speed of the electrons and number of electron per unit
volume on an average yields the intensity.

Thus N = 1 = Intensity x Area X Length/ Electron Speed

= o X 0.28 x 10712 % 2/2 x107

This gives Iin = 4% 101 m2g!

R. Bach, D. Pope, Sy-H Liou and H. Batelaan, New J. of Physics Vol. 15, 033018 (2013).
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