The Design of a Nuclear Reactor
Deduct 0.1 if units missing in final answer upto a maximum of 0.5 points

Uranium occurs in nature as UOy with only 0.720% of the uranium atoms being 2**U. Neutron
induced fission occurs readily in ***U with the emission of 2-3 fission neutrons having high
kinetic energy. This fission probability will increase if the neutrons inducing fission have low
kinetic energy. So by reducing the kinetic energy of the fission neutrons, one can induce a chain
of fissions in other ?*U nuclei. This forms the basis of the power generating nuclear reactor
(NR).

A typical NR consists of a cylindrical tank of height H and radius R filled with a material called
moderator. Cylindrical tubes, called fuel channels, each containing a cluster of cylindrical fuel
pins of natural UO; in solid form of height H, are kept axially in a square array. Fission
neutrons, coming outward from a fuel channel, collide with the moderator, losing energy, and
reach the surrounding fuel channels with low enough energy to cause fission (Figs I-11I). Heat
generated from fission in the pin is transmitted to a coolant fluid flowing along its length. In
the current problem we shall study some of the physics behind the (A) Fuel Pin, (B) Moderator
and (C) NR of cylindrical geometry.

Schematic sketch of the
Nuclear Reactor (NR)
Fig-I: Enlarged view of a
fuel channel (1-Fuel Pins)
Fig-II: A view of the NR

(2-Fuel Channels)

Fig-IIl: Top view of NR
(3-Square Arrangement of
Fuel Channels and
4-Typical Neutron Paths).

Only components relevant
to the problem are shown
2 (e.g. control rods and

coolant are not shown).

A. Fuel Pin ' i

Data for UO,
1. Molecular weight AM,,=0.270 kg mol ! 2. Density p=1.060x10* kgm™3
3. Melting point T,,=3.138x10% K 4. Thermal conductivity A=3.280 Wm K™}

A1l Consider the following fission reaction of a stationary ?**U after it absorbs a neutron of
negligible kinetic energy.

B3P M e 2 L AR

Estimate AE (in MeV) the total fission energy released. The nuclear masses are: m(>**U)
= 235.044 u; m(**Zr) = 93.9063 u; m(*°Ce) = 139.905 u; m('n) = 1.00867 uand 1 u =
931.502 MeV c¢=2. Ignore charge imbalance.
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Solution: AE = 208.684 MeV

Detatled solution: The energy released during the transformation is

AE = [m(**U) + m(*n) — m(**Zr) — m(**°Ce) — 2m(*n)]c?
Since the data is supplied in terms of unified atomic masses (u), we have

AE = [m(**U) — m(**Zr) — m(**°Ce) — m(*n)]c?

= 208.684 MeV [Acceptable Range (208.000 to 209.000)]

(0.1 deducted if the answer is not in 6 significant figures)
from the given data.

A2 Estimate N the number of #*°U atoms per unit volume in natural UQs,.

Solution: N = 1.702 x 10?6 m—3

Detailed solution: The number of UO, molecules per m? of the fuel N; is given
in the terms of its density p, the Avogadro number N4 and the average molecular
weight M, as
PN
Ny =—=
T M,
10600 x 6.022 x 10%

0.270

= 2.364 x 10% m—3

Each molecule of UO, contains one uranium atom. Since only 0.72% of these are
23577
N =0.0072x N;

= 1.702 x 10*® m ™ [Acceptable Range (1.650 to 1.750)]

A3 Assume that the neutron flux ¢ = 2.000 x 10'® m~2 s~! on the fuel is uniform. The fission

cross-section (effective area of the target nucleus) of a ***U nucleus is o5 = 5.400 x1072¢
m?*. If 80.00% of the fission energy is available as heat, estimate @ (in W m™2) the rate of
heat production in the pin per unit volume. 1MeV = 1.602 x10713 J.

Solution: Q = 4.917 x 108 W/m"

Detailed solution: It is given that 80% of the fission energy is available as heat
thus the heat energy available per fission E; is from a-(i)
E; = 0.8 x 208.7 MeV
= 166.96 MeV
= 2878 w1t g
The total cross-section per unit volume is NV X oy. Thus the heat produced per unit
volume per unit time @ is
Q=N xofx¢xE;
= (1.702 x 10%) x (5.4 x 10726) x (2 x 10'8) x (2.675 x 10711) W/m®
= 4917 x 10* W/m® [Acceptable Range (4.800 to 5.000)]
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A4 The steady-state temperature difference between the center (7,) and the surface (T}) of the
pin can be expressed as T, — Ty = kF(Q,a,\) where k = 1/4 is a dimensionless constant
and a is the radius of the pin. Obtain F(Q,a, \) by dimensional analysis.

2
Solution: T, — T, = i—i.
Detailed solution: The dimensions of T, — T, is temperature. We write this as
T. — T, = [K]. Once can similarly write down the dimensions of @, a and . Equating
the temperature to powers of @, a and A, one could state the following dimensional
equation:

K = @%al X7

= [MET-3 = [L] F [ML'T3K]"

This yields the following algebraic equations

v = -1 equating powers of temperature

a+ 7 = 0 equating powers of mass or time. From the previous equation we get a = 1
Next —a + 8 + v = 0 equating powers of length. This yields 8 = 2.

([0.1] for each correct value)

9

: a . y .
Thus we obtain T, — Ty = —— where we insert the dimensionless factor 1/4 as sug-

gested in the problem. No penalty if the factor 1/4 is not written.

Note: Same credit for alternate ways of obtaining «, /3, 7.

A5 The desired temperature of the coolant is 5.770 x10% K. Estimate the upper limit a, on
the radius a of the pin.

Solution: a, = 8.267 x 1073 m.

Detailed solution: The melting point of UO, is 3138 K and the maximum tempera-
ture of the coolant is 577 K. This sets a limit on the maximum permissible temperature
(Tt — T) to be less than (3138 - 577 = 2561 K) to avoid “meltdown”. Thus one may
take a maximum of (7, — T;) = 2561 K.
Noting that A = 3.28 W/m - K, we have

o 2561 x4 x 3.28
%= T 917 % 108

Where we have used the value of @ from A2. This yields a, = 8.267 x 1073 m. So
a, = 8.267 x 1073 m constitutes an upper limit on the radius of the fuel pin.

0.0 for (7. — T,) < 2000 K + 0.3 for a, < 7.305 x 10™3

0.0 for (7. —T;) > 2561 K + 0.3 for a, > 8.267 x 10~3

0.3 for 2000 < (T, —T,) <2200 K + 0.3 for 7.05 < a, < 7.662 x 10~3

0.7 for 2200 < (T, — T,) < 2561 K + 0.3 for 7.662 < a, < 8.267 x 1073

(0.2 deducted for missing factor 1/4)

Note: The Tarapur 3 & 4 NR in Western India has a fuel pin radius of 6.090 x 1073
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B. The Moderator

Consider the two dimensional elastic collision between a neutron of mass 1u and a moderator
atom of mass Au. Before collision all the moderator atoms are considered at rest in the
laboratory frame (LF). Let 7 and 7, be the velocities of the neutron before and after collision
respectively in the LF. Let ¥,, be the velocity of the center of mass (CM) frame relative to LF
and @ be the neutron scattering angle in the CM frame. All the particles involved in collisions
are moving at non-relativistic speeds

Bl The collision in LF is shown schematically with €, as the scattering angle (Fig-IV). Sketch
the collision schematically in CM frame. Label the particle velocities for 1, 2 and 3 in
terms of o5, v and .. Indicate the scattering angle 8. [1.0]

Flg—IV Va

Collision in the Laboratory Frame
1-Neutron before collision
2-Neutron after collision
3-Moderator Atom before collision
4-Moderator Atom after collision

Solution:

Laboratory Frame Center ol Mass Frame

Vo~ vm

a

S
O
A 4
A

: (0.2 for # shown greater than 6;)

’ (For 3 or more correct arrows 0.2 or else 0.0)

(For 3 correct arrows but one incorrect 0.1)

(0.2 for correct labeling of each particle with or without vector sign)

B2 Obtain v and V/, the speeds of the neutron and the moderator atom in the CM frame after
the collision, in terms of A and . , [1.0]

Solution: Detailed solution: Before the collision in the COMF (v, — v,,,) and vy,
will be magnitude of the velocities of the neutron and moderator atom respectively.
From momentum conservation in the COMF, v, — v,, = Avy, gives vy, = A"—j;l. 0.3




After the collision, let v and V' be magnitude of the velocities of neutron and moderator
atom respectively in the CM frame. From conservation laws,

1 1 1 L e
y == AV and §(Ub —vm)? + 514037‘ = v’ + AV (= [0.2+0.2))

2 2 0.4

Solving gives v= 2% and V =

P 4:7- (OR) From definition of center of mass frame
Avy

B = 4+ . Before the collision in the CM frame v, — v,, = o and v, will be mag-
nitude of the velocities of the neutron and moderator atom respectively. In elastic
collision the particles are scattered in the opposite direction in the CM frame and so

the speeds remain same v = :}r”l and V' = % (= [0.2 4-0.1]). 0.3

Note: Alternative solutions are worked out in the end and will get appropriate weigh-
tage.

B3 Derive an expression for G(a, ) = E,/Ep, where E, and E, are the kinetic energies of the
neutron, in the LF, before and after the collision respectively, and o = [(A—1)/(A+1)]?,  [1.0]

Solution:
E, A?>+2Acosf+1 1
G(Q,H)—Eb_ AT 17 25[(14—&) (1 — «)cosb].
Detailed solution: Since v, = ¥ + v, v2 = 7.' + 2'" 91)Lm cosf (— [0. ]) Substi-
tuting the values of v and v, v? = /;Lle)Z -+ AT1)2 + (4+1), cosf (— [0.2]), s | 0.5

v, E, A?+2Acosf+1

v By (A+1)2 0.2
A4 1 24 1
G(a,0) = <A+1)2+(A+1)20059~5[(1+a)+(1—a)cos@].

Alternate form
(1 -a)(1—cosh)

= 1—
2
0.3
Dlmensmnally correct but wrong expressions of v and V and with
substitutions up to E,/E, half credit 0.5
Note: Alternative solutions are worked out in the end and will get appropriate weigh-
tage.
B4 Assume that the above expression holds for D,O molecule. Calculate the maximum pos-
sible fractional energy loss f; = E" ¢ of the neutron for the D;O (20 u) moderator. [0.5]

Solution: f; = 0.181

Detailed solution: The maximum energy loss will be when the collision is head




C1 Consider a NR with k& = 1.021x1072 m and ky = 8.787x1073 m™L.
fixed volume the leakage rate is to be minimized for efficient fuel utilisation obtain the

on ie., E, will be minimum for the scattering angle 0 = .
So Ea = Emzn = aEb.

For D,0O, a = 0.819 and maximum fractional loss (E‘_EE%) =1-a=0.181. [4c-
ceptable Range (0.170 to 0.190)]

Correctly calculated f; with dimensionally correct but wrong expression
having minimum at 6 = 7 full credit 0.5

C. The Nuclear Reactor
To operate the NR at any constant neutron flux U (steady state), the leakage of neutrons has to
be compensated by an excess production of neutrons in the reactor. For a reactor in cylindrical

R

geometry the leakage rate is k; [(3'4&)2 + (77})2} U and the excess production rate is ks W. The
constants k; and ko depend on the material properties of the NR.

dimensions of the NR in the steady state.

Noting that for a

Solution: R = 3.175 m, H = 5.866 m.

Detailed solution: For constant volume V = nR*H,

() + GY] =

d [2.405°7H +7r_2 _ 2408w
v H2|  V ge

2B
dH

dH

gives (2452)° =2 ()"

For steady state,

1.021 x 1072

2.405\ > T\ 2 3
(T) +(ﬁ) }\I/-8.787>< 1073 .

Hence H = 5.866 m [Acceptable Range (5.870 to 5.890)]
R = 3.175 m [Acceptable Range (3.170 to 3.180)].

Alternative Non-Calculus Method to Optimize
s

2.405Y
Minimisation of the expression <T) -+ (E
xR

Substituting for R? in terms of V, H we get

2
) , for a fixed volume V =

2.405°7H it 7r_2
1% H?’
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Hich b ” 2.405%7H ok 2.405%7 H 2 72 0.9
whic e written as, F—. .
ich can €0 a8, — o Ve iE (0.2)
Since all the terms are positive applying AMGM inequality for three positive terms we
get
2405l | 24080 4 1) 4 \3/2.405%]{ | 2405%nH  w® _ d2.4054ﬁ4
3 - 2V 2V H? A (0.2)
The RHS is a constant. The LHS is always greater or equal to this constant im-
plies that this is the minimum value the LHS can achieve. The minimum is achieved
2.405%7r H
when all the three positive terms are equal, which gives the condition —-Q—VL =
w2 2.405)? 72
R Fii oo iy O (—) . 0.2
H* < R ) H e
For steady state,
2.405\% /12
1021 x 1072 | (=22 + ()| 0 =8787x 107 w.
R H
(0.5)
Hence H = 5.866 m [Acceptable Range (5.870 to 5.890)]
R = 3.175 m [Acceptable Range (3.170 to 3.180)]. (0.2)
Note: Putting the condition in the RHS gives the minimum as Z—; From the condi-
i i 73 2.405% 72 = w2 5/ 2.405%*
ion we get — = ———— = A ey
> H3 2V H? 42
Note: The radius and height of the Tarapur 3 & 4 NR in Western India is 3.192 m and
5.940 m respectively.
C2 The fuel channels are in a square arrangement (Fig-IIT) with nearest neighbour distance
0.286 m. The effective radius of a fuel channel (if it were solid) is 3.617 x 1072 m. Estimate
the number of fuel channels F;, in the reactor and the mass M of UO, required to operate
the NR in steady state. [1.0]
Solution: F,, = 387 and M = 9.892 x 10*kg.
Detailed solution: Since the fuel channels are in square pitch of 0.286 m, the ef-
fective area per channel is 0.286% m? = 8.180 x 1072 m?. 0.3
The cross-sectional area of the core is 7R? = 3.142 x (3.175)> = 31.67 m?, so the
maximum number of fuel channels that can be accommodated in the cylinder is the
integer part of 03%).86178 =% 0.4
Mass of the fuel=387x Volume of the rod xdensity
= 387 x (7 x 0.03617% x 5.866) x 10600 = 9.892 x 10%*kg. 0.3




F, = 387 [Acceptable Range (380 to 394)]
M =9.892 x 10%kg [Acceptable Range (9.000 to 10. OO)]

Note 1: (Not part of grading) The total volume of the fuel is 387 x (7 x 0.03617% x
5.866) = 9.332 m®. If the reactor works at 12.5 % efficieny then using the result of
a-(iii) we have that the power output of the reactor is 9.332 x 4.917 x 108 x 0.125 =
573 MW.

Note 2: The Tarapur 3 & 4 NR in Western India has 392 channels and the mass of the
fuel in it is 10.15 x10* kg. It produces 540 MW of power.

Alternative Solutions to sub-parts B2 and B3: Let o be the scattering angle of the
Moderator atom in the LF, taken clockwise with respect to the initial direction of the neutron
before collision. Let U be the speed of the Moderator atom, in the LF, after collision. From
momentum and kinetic conservation in LF we have

vy, = wvgcosf + AU coso, (1)
0 = wvgsinf, — AUsino, (2)
1 1 1
§U§ = —AU2 + 2ua (3)

Squaring and adding eq(1) and (2) to eliminate ¢ and from eq(3) we get

AU? = 2?2 + vf — 20,1y cos 0y,
AU = Av — Av?, (4)
which gives
20, cos O, = (A + 1)v2 — (A — 1)v7. (5)
(ii) Let v be the speed of the neutron after collision in the COMF. From definition of center
of mass frame v,,, = & !
A+1

Vg sin 0y, and v, cos f, are the perpendicular and parallel components of v,, in the LF, resolved
along the initial direction of the neutron before collision. Transforming these to the COMF
gives v, sin 0y, and v, cos f; — vy, as the perpendicular and parallel components of v. Substitut-
ing for vy, and for 2v,v;cos 6, from eq(5) in v = \/112 sin® 0y, + v2 cos? 0, + V2, — 204V, cos O,
Up

A+1°
v? 4+ v, + 2vv,, cos §. Substituting for v and v,, and simplifying gives,

Squaring. the components of v to eliminate QL gives v2 =

and simplifying gives v =

v2 E, A?*+2Acosf+1

v By (A+1)?
E, A*+1 24 1 :
G(a,0) z, (A+1)2+(A+1)QCOS 2[( + a)+ (1 — a) cos )
(OR)
(iii) From definition of center of mass frame v, = A(:ti T After the collision, let v and V

(0.3



be magnitude of the velocities of neutron and moderator atom respectively in the COMF.
From conservation laws in the COMF,

1 P | 1 1
= / —{(1h — 7 2 — i ]2 = == v2 — L /2
u = A} and Q(z.b Um)” + 2Azm 5 + 2.41 :

Solving gives v = :r’l and V' = 2. We also have vcos = v, cosf; — v, substituting for v,,

and for v, cos 0 from eq(5) and‘simplifying gives
v2 E, A?+2Acosf+1

a

2 By, (At 1)y
E A2 41 24 1
Gla,0) = = = osf = = [(1 1 —a)cosf)].
(a, ) E, (A+1)‘—’+(A+1)2COS 2[( +a) + (1 — «) cosb)]
(OR)
(iv) From definition of center of mass frame v, = Ali - After the collision, let v and V

be magnitude of the velocities of neutron and moderator atom respectively in the COMEF.
From conservation laws in the COMF,

1 g  dag lg 1.
v=AV and 5(17, —Um)° + §A'Um = s + §AV°.
Solving gives v = /ﬁ”l and V = g%, Usino and Ucoso are the perpendicular and parallel

components of U, in the LF, resolved along the initial direction of the neutron before collision.
Transforming these to the COMF gives Usino and —U coso + v, as the perpendicular and
parallel components of V. So we get U? = V?sin? 0+ V2 cos? § +v2, — 2V, cosf. Since V = v,
we get U? = 202 (1 — cosf). Substituting for U from eq(4) and simplifying gives

’Ug E, B A% +2Acosh+1

v By, (A+1)p

E, A?24+1 24 1
Gle, ) = =2 = il ALl — _
(.0 = 5 = e Ay o0 = 51+ @) + (1~ a)cos]

. A2 +2Acosf+1 v :
Note: We have v, = v vp. Substituting for v,, v, v, in v cos @ = v, cos 8y —vm,

A+1

gives the relation between #; and 6.

Acosf + 1
VA2 +2Acosf+1
Treating the above equation as quadratic in cos§ gives,
—sin28; £+ cos B/ A2 — sin? 0r
Y .
For 61, = 0° the root with the negative sign gives # = 180° which is not correct so.

. &, 8
cos @/ A2 —sin? 0, — sin’ 4,

cosfy =

cosf =

cosf = 1
.
Substituting the above expression for cos in the expression for z_; gives an expression in terms
of cosfy ’
A o A% 4+ 2cosfOp+/ A% —sin? 0, + cos 26,
¥ B (A+1) |



