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T2: James Webb Space Telescope (12 pts)

Completed July 13, 4:30 PM China Time
Some general notes for entire Theory 2 marking
An equation which is dimensionally correct, but miss-

ing a multiplicative factor or having a single transcrip-
tion error from a previous equation, will receive a de-
duction of -0.1 pts.
An equation which is dimensionally incorrect or one

which has more than two transcription errors will re-
ceive no points.
Follow on errors are not transcription errors; the only

penalty will be in the first occurrence of a mistake, ex-
cept in the case of a dimensionally incorrect equation,
which still receives no points, even if a follow on error.
There are two follow on caveats below.
If an error in an equation trivializes the remainder of

the problem, then no additional points after that should
be awarded. For example, if a student is computing
counts, and they arrive at the incorrect answer of zero,
then they should not get future points that compute in-
tensity, density, uncertainty, as these would all become
trivial.
If an error in an equation makes the remainder of a

problem physically unrealistic, then they should get no
points for any requested numerical results, but they can
continue to get points for theoretical equations. For ex-
ample, if a student has an extra factor of 100, they can
get points for derivations, but if asked to find a temper-
ature they will not get points for reporting 100 times the
actual temperature. They will also not get points for re-
porting the correct actual temperature, because it will
not be consistent with their theory.
If an equation can be implied to have been used, then

the assumption is that it did exist and would get points.
For example, writing Eq. 5 without explicitly writing
Eq. 4 would get points for both equations, subject to er-
ror rules above.
In places on the mark scheme there are a range of ac-

ceptable answers, and in places the range is divided into
two possible ranges, a close range for full points, and a
larger range for partial points. This might appear like
this:

35µm ≤ dd ≤ 47µm 0.2 pts
20µm ≤ dd ≤ 90µm 0.1/0.2 pts

which means that they get 0.2 pts if they are within the
narrow range, but only 0.1 pts if they are outside the nar-
row range but still within the larger range. They would
never get 0.3 pts in this scheme, so don’t double count!

Part A: Imaging a Star (1.8 pt)

1. Diameter of image
The ratio of diameter do for an object at a distance
Do " f and an image diameter di is given by

di
do

=
f

Do
, (1)

so the diameter of the image is

di =
(1.7× 1011 m)(130m)

(89 ly)(3× 108 m/s)(365 d/y)(86, 400 s/d) =

= 2.6× 10−5 m = 26µm.

Marking scheme:

correct formula Eq 1 0.2 pts
di = (26± 1)µm 0.2 pts
sum 0.4pts

Units must be shown for a numerical result to get
points; writing the correct answer without showing
work also receives full marks for this problem.

2. Diameter of central maximum
The angular radius of the central maximum is

θmin = 1.22
λ

D
(2)

λ = 800nm is given in the problem
D is the aperture size, which is the primary mirror,
or π

4D
2 = 25 m2, so

D = 5.6m

The diameter of the central maximum is then

dd = 2θminf = 2.44
λ

D
f = 1.22

λf√
A/π

(3)

The numerical value is

dd = 2(1.22)
(8× 10−7 m)

(5.6 m)
(130 m) =

= 4.5× 10−5 m = 45µm.

dd = 37µm is also acceptable (omitting the factor of
1.22 is okay).
Marking scheme:

correct formula Eq 3 0.1 pts
Aperture D = (5.6± 0.2)m 0.1 pts
35µm ≤ dd ≤ 47µm 0.2 pts
sum 0.4pts

No penalty for ignoring factor of 1.22, so check their
math. Units must be shown for a numerical result to
get points; writing the correct answerwithout show-
ing work also receives full marks for this problem.

3. Equilibrium temperature of the detector at the loca-
tion of the image?
The radiant power from the star is

Pg = 4πro
2σTg

4 (4)

The intensity at the location of the scope is

Ig =
Pg

4πDo
2
=

(
ro
Do

)2

σTg
4 (5)
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This is collected onto the mirror with area A and fo-
cused on a single spot of radius ri, so that the power
incident is

Pi = A

(
ro
Do

)2

σTg
4 = A

(
ri
f

)2

σTg
4 (6)

But at the image we have an equilibrium tempera-
ture of

Pi = aσTp
4,

where a = πr2i , so

aσTp
4 =

(
ri
f

)2

AσTg
4

or, ignoring diffraction,

Tp =

(
A

πf2

) 1
4

Tg ≈ 530K (7)

When considering diffraction the actual area of the
stars’ image is larger,

a′ =

(
di + dd

di

)2

a ≈ 2.73a (8)

where the actual ratio depends on answers above.
This means the actual pixel temperature will be

Tp,correct =

(
A

(2.73)πf2

) 1
4

Tg ≈ 320K. (9)

Marking scheme:

power of source, Eq 4 0.2 pts
intensity at mirror, Eq 5 0.2 pts
power of image, Eq 6 0.2 pts
correct for diffraction Eq. 8 0.1 pts
Either Eq. 7 or Eq. 9 0.1 pts
numerical result 0.2 pts
sum 1.0 pt

Units must be shown for a numerical result to get
points; the answer T ≈ (320 ± 10)K for including
diffraction or T ≈ (530 ± 10)K for ignoring diffrac-
tion must be consistent with their approach. Check
the number, since the ratio in Eq 8 depends on their
answer to A.2
Students must present a symbolic equation in their
solution.
Writing Eq. 9 without showing any other work re-
ceives 0.8 pts; Writing Eq. 7 without showing any
other work receives 0.7 pts.

Part B: Counting Photons (1.8 pt)

1. Temperature of source
We are interested in the slope of the graph, which is

slope = − (3)− (−1)

(0.111/K)− (0.151/K) = 100K

Since this is a characteristic temperature, it is at least
a partial answer to the problem.
The value of

|∆Eg

6kB
| = ln 10× 100K = 230K

So the value of

∆Eg = 6× 230K = 1380K

Marking scheme:

slope of graph = 0.01 0.2 pts
Tgraph = 230K 0.1 pts
Tsource = 1380K 0.1 pts
sum 0.4 pt

Writing either temperature correctly implies they
found the slope of graph, and would get the +0.2 pts.
Just writing Tsource = 1380K gets full marks, as it re-
ally is possible to solve this in one’s head.
Order ofmagnitude T = 103Kwill get fullmarks, and
no work needs to be shown.

2. Write an expression for the total count uncertainty
σt

The three uncertainties are

σr

and
σd =

√
idτ

and
σp =

√
pτ

and then
σt

2 = σr
2 + (id + p) τ

Marking scheme:

correct error for dark current 0.1 pts
correct read photon 0.1 pts
added in quadrature 0.2 pts
sum 0.4 pt

Writing
σt = σr +

√
idτ +

√
pτ

only gets +0.1, instead of the quadrature +0.2
Correct dark current and photon count errors in fi-
nal answer are acceptable evidence for those points;
it is not necessary for the student to explicitly state
what is what.
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3. Determine the photon count for a signal to noise ra-
tio of S/N = 10.
At a temperature of T = 7.5K, the dark current is id =
5 electrons/second. This gives a total dark current
count of

idτ = 5× 104

Answers in the range id = 5 ± 1 will be accepted for
full marks.
Let P be the photon count. Then

P = 10σt

so
P 2 = 100

(
σ2
r + idτ + P

)
(10)

with solution P ≈ 2290, and a rate of p = 0.229 pho-
tons per second.
Marking scheme:

id = (5± 1) e/s 0.2 pts
1 ≤ id ≤ 10 0.1/0.2 pts
Eq 10 0.1 pts
0.206 ≤ p ≤ 0.25 0.2 pts
0.10 ≤ p ≤ 0.33 0.1/0.2 pts
sum 0.5 pt

They only get the points for p, the count rate, if it
agrees with their assumption for id, so check the
math!
Writing only the absolute counts P instead of the
rate p would get 0.1 pts for 2060 < P < 2500 and no
points if outside this range.

4. What is intensity of source?
The near-infrared photons have an energy of Eg =
2.3× 6kBT , so

Eλ = (1380K)(1.38× 10−23 J/K) = 1.9× 10−20 J

This is not an order of magnitude question like B.1
The energy received every second is

E = (0.23)(1.9× 10−20 J) = 4.4× 10−20 J

and the incident intensity on the primary mirror is
then

I =
E/t

A
=

(4.4× 10−20 J/s)
(25m2)

= 1.8× 10−22W

Marking scheme:

Eλ = (2± 0.1)× 10−20J 0.3 pts
Forgetting ln 10 factor -0.1 pts
I = (1.8± 0.2)× 10−22W 0.2 pts
sum 0.5 pt

If they forget factor ln 10, then the correct intensity
would be (7.8±0.2)×10−23W. They only get the ln 10
penalty once!

Part C: The Passive Cooling

1. Find expressions for the temperatures of first and
fifth sheet
This is a cleaned up version of an “ideal” solu-
tion
Let Qi represent heat flow off of a surface, and Qij

represent the heat flow difference off of two sur-
faces that are facing each other.
The student needs to consider the three types of dif-
ferences below:
Between sun and first sheet:

Q01 = εAσ

(
I0
σ

− T 4
1

)
(11)

which is the net heat flow into sheet 1 from the sun-
side.
Between any two adjacent sheets:

Qij = εAσ
(
T 4
i − T 4

j

)
, (12)

which is not the net heat flow between the sheets, it
is merely a convenient expression to use later.
Between last sheet and the cold, cruel vacuum of
space:

Q56 = εAσ
(
T 4
5

)
, (13)

which is the net heat flow out of the far side of the
last sheet.
From the problem text, the flux emitted by one sheet
and absorbed by an adjacent sheet is

qi = αQi

so that the net heat flow flux out of one sheet ab-
sorbed by the adjacent sheet is

qij = αQij

and the flux ejected into space between two sheets
is

q′ij = βQij

This doesn’t affect the marking, but the approximation being
madehere is thatβ is the same for all four pairs of adjacent sheets.
This makes the math solvable, and was the explicit assumption
that the students were told to make.

A student will need to recognize that

Q01 = εAσ

(
I0
σ

− T 4
1

)
(14)

Q12 = εAσ
(
T 4
1 − T 4

2

)
(15)

Q23 = εAσ
(
T 4
2 − T 4

3

)
(16)

Q34 = εAσ
(
T 4
3 − T 4

4

)
(17)

Q45 = εAσ
(
T 4
4 − T 4

5

)
(18)

Q56 = εAσ
(
T 4
5

)
(19)

can be summed to give

Q01 +Q12 +Q23 +Q34 +Q45 +Q56 = εAI0 (20)
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A student will need to consider energy balance
across any one sheet:

qi−1,i = qi,i+1 + q′i,i+1 (21)

basically stating that the net flow into sheet i from
sheet i − 1 must equal the net flow out of sheet i to
either sheet i+ 1 or into space.
Substitute in Qij ,

αQi−1,i = αQi,i+1 + βQi,i+1

or
Qi−1,i =

(
α+ β

α

)
Qi,i+1 (22)

The relation for sheet 1 is a little different:

q0,1 = Q0,1 = αQ1,2 + βQ1,2 (23)

and so is the relation for sheet 5:

q4,5 = Q5,6 (24)

What will eventually matter most is

Q56 =
α4

(α+ β)4
(25)

Now use the recursion of Eq. 22 to sumup the sixQij

terms in Eq. 20:

kQ0,1 = εAI0, (26)

with the constant k defined as

k=1+
1

α+ β
+

α

(α+ β)2
+

α2

(α+ β)3
+

α3

(α+ β)4
+

α4

(α+ β)4

(27)
Substitute the expression for Q0,1 back into Eq. 11
and get

T1 = 4

√
I0
σ

(
1− 1

k

)
=

4

√
I0
kσ

(k − 1) (28)

and the into Eq. 25 and Eq. 13 to get

T5 =
α

α+ β
4

√
I0
kσ

(29)

which can also be written elegantly as

T5 =
α

α+ β
4

√
1

k − 1
T1.

Marking scheme:

Net flow into sheet 1 Eq 11 0.2 pts
“Net” flow sheet i → j Eq 12 0.2 pts
Net flow out of sheet 5 Eq 13 0.2 pts
Sum to eliminate sheet temps Eq 20 0.2 pts
Generic Energy flow Eq 21 0.2 pts
Recursion for Qij Eq 22 0.2 pts
Sheet 1 Energy flow Eq 23 0.2 pts
Sheet 5 Energy flow Eq 24 0.2 pts
Simplify sum Eq 26 0.2 pts
Find k Eq 27 0.2 pts
Final Expression for T1, Eq 28 0.2 pts
Final Expression for T5, Eq 29 0.2 pts
sum 2.4 pt

• In most cases a single mistake in an equation that
is still dimensional correct will get 0.1 pts for the
equation. Making the samemistakemultiple times
is not a follow on error, and would be penalized
every time.

• Any equivalent to Eq 12 would get the 0.2 pts.
• Any attempt to balance energy flow on a generic
sheet like Eq 21 that is dimensionally correct and
reasonable given their presentation would get the
0.2 pts

• Since sheet 1 and sheet 5 have a different en-
ergy balance approach, they must show those sep-
arately to get those points.

• It is possible to arrive at Eq 26 based on dimen-
sional analysis alone. A student who writes some
form of Eq 26 without clear justification would get
points for Eq 20 and Eq 26. The could get full
marks for final sheet temperatures if it is consis-
tent; if they did, then they would probably also get
at least partial points for Eq 11 and/or Eq 13. They
would need to introduce one more unknown con-
stant to have defined Q56 = k′Q01. The maximum
points I would expect with this approach is 1.2 pts.

• k in Eq 27 is allowed a single error for 0.1 pts. Two
errors is no points.

• Failing to include the back flux of Eq 12 is only a
penalty on that equation but would be zero points,
as it is a serious error. That means writing the
equivalent of Qij = εAT 4

i is zero points! The work
after this would have a follow on error that would
need to be traced.

Original Solution
Don’t use this, eh?
Start with a statement of net energy flow q01 into the first sheet
from the sun:

q01 = εA
(
I0 − σT 4

1

)
(30)

whereA is the area of the sheet, ε is the emissivity, σ is the Stefan-
Boltzman constant, and T1 is the temperature of the first sheet.
Now consider the space between two sheets i and j. Each sheet
radiates an energy flow

εAσT 4

toward the other sheet, but a fraction β is ejected into space out
the gap.
We have defined α as the fraction emitted from one sheet that is
absorbed by the other sheet, so the net energy flow from sheet i
into sheet j is

qij = αεAσ
(
Ti

4 − Tj
4) (31)

There is also a lost fraction emitted into space from between the
sheets, given by

q′ij = βεAσ
(
Ti

4 − Tj
4) =

β

α
qij (32)

Don’t make themistake of assuming that α+β = 1, as some of the
energy emitted from a sheet could be reabsorbed by that sheet.
Finally, write an expression for the net thermal radiant energy
flow into space, with an ambient temperature of Tspace = 0, from
the far side of the fifth sheet.

q5s = εA
(
σT 4

5 − σT 4
s

)
= AεσT 4

5 (33)

Write each of the Eq. 31, above in the form
1

α
qij = Aεσ(T 4

i − T 4
j ), (34)

and then sumup the terms fromEq. 30, the four fromEqs. 34, and
Eq. 33:

q01 +
1

α
(q12 + q23 + q34 + q45) + q5s = εAI0 (35)
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as all of the Ti terms cancel out on the right!
Now consider a schematic of the energy flow below

From energy conservation, the net flow into sheet one from the
sun and the net flow out of sheet one toward sheet two or ejected
from gap is

q01 = q12 + q′12, (36)
where q′12 is the part emitted into space from the gap.
Combine with Eq. 32 and

q01 =

(
1 +

β

α

)
q12 =

α+ β

α
q12 (37)

Similarly, for the remaining pairs of sheets,

q23 =
α

α+ β
q12 =

(
α

α+ β

)2

q01,

and

q34 =
α

α+ β
q23 =

(
α

α+ β

)3

q01,

and

q45 =
α

α+ β
q34 =

(
α

α+ β

)4

q01,

Finally, for the fifth (last) sheet all of the net energy flow in from
the fourth sheetmust be completely ejected into space on the dark
side.

q5s = q45 =

(
α

α+ β

)4

q01. (38)

The sum on the left side of Eq. 35 can then be written as

kq01 = εAI0 (39)

where

k=1 +
1

α+ β
+

α

(α+ β)2
+

α2

(α+ β)3
+

α3

(α+ β)4
+

α4

(α+ β)4

is a convenient constant.
Combining Eq. 30 with Eq. 39,

εAI0
k

= εA
(
I0 − σT 4

1

)

so

T1 = 4

√
I0
σ

(
1−

1

k

)
= 4

√
I0
kσ

(k − 1) (40)

From above,

q5s =

(
α

α+ β

)4

q01.

so

AεσT 4
5 =

(
α

α+ β

)4 εAI0
k

or

T5 =
α

α+ β
4

√
I0
kσ

(41)

which can also be written elegantly as

T5 =
α

α+ β
4

√
1

k − 1
T1.

As this part of the question is complex, with multiple ways to go
wrong, andmany opportunities for approximations, themarking
scheme will be necessarily convoluted.
Some expected mistakes:

(a) Failing to account for the back flux of energy. This would
be

I0 = 2σT 4
1

and then
ασT 4

1 = 2σT 4
2 ,

and so on, concluding with

I0 = σ

(
2

α

)4

T5

or
T5 =

α

2
T1

(b) Inconsistent treatment of emissivity
The most likely error is of the form

εI0 = σT 4
1

(c) Incorrectly resolving β and α.

2. Find α and β

Assuming students grab the hint about effective ab-
sorptive areas, then expect
Area of gap:

Agap = 4h
√
Asheet (42)

Area of one sheet A
Assume that the probability of being absorbed by a
sheet is the ratio of effective areas

α =
εAsheet

2εAsheet +Agap
(43)

This result yields α = 0.3.
Assume the probability of ejection is a ratio of effec-
tive areas

α =
Agap

2εAsheet +Agap
(44)

This result yields β = 0.4.
Marking Scheme:

Gap area Eq 42 0.2 pts
Estimating α Eq 43 0.2 pts
Estimating β Eq 44 0.2 pts
Factor of 2 for A in both 0.2 pts
Weighting A by emissivity in both 0.2 pts
Finding α 0.1 pts
0.25 ≤ α ≤ 0.35 0.1 pts
Finding β 0.1 pts
0.3 ≤ β ≤ 0.83 0.1 pts
subtotal 1.4 pt
Find a better β 0.2 pts
sum 1.6 pt

• “in both” means that to get the points they must
have used the factor of two and the emissivity both
times; if it is missing from one, they get 0.1 pts for
the equation it is present in.

• Find α and β means that it is consistent with own
work.

• Assuming 2α+ β ≈ 1 with proof would mean they
only need to find either α or β, and they would get
all of the points upon finding the other one. The
highest possible subtotal score in the case would
be 1.4 pts. Proof can be simple, however, like say-
ing “two sheets, equal probability of being trans-
mitted or absorbed into the other.”
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• Assuming 2α + β ≈ 1 without proof would mean
they only need to find either α or β, and they
would get 2/3 of the points upon finding the other
one. The highest possible subtotal score in the case
would be 1.2 pts.

• Assuming α + β ≈ 1 stating a “reasonable” proof
would mean they only need to find either α or β,
and they would get 2/3 of the points upon finding
the other one. The highest possible subtotal score
in the case would be 1.2 pts. Stating “energy con-
servation” is reasonable, though incomplete.

• Assuming α + β ≈ 1 without any proof would
mean they only need to find either α or β, and they
would get 1/2 of the points upon finding the other
one. The highest possible subtotal score in the case
would be 1.1 pts.

• Finding α and β means that it is consistent with
own work.

• Read the special note about finding a better β be-
low to understand the last 0.2 pts.

Special note
Our assumption is that the rejected heat can bewrit-
ten as

qij = βεσA
(
T 4
i − T 4

j

)

This is certainly true, but β would be infinite in the
case of Ti = Tj . It would have been better to write

qij = β′εσA
(
T 4
i + T 4

j

)

which would follow the energy conservation rule
2α+ β′ = 1 if ε ( 1.
In fact, β′ is really what the student is finding in the
approach above.
Assuming that the temperatures of adjacent sheets
are related by

Tj = γTi

then
β = β′ 1 + γ4

1− γ4

In our case,
γ4 ≈ (100K)

(400K)
which means

β =
5

3
β′ =

5

3
− 10

3
α

is the best estimate; in our case, we expect β = 0.67.
Anywho correctly does this gets those 0.2 pts. If they
make a single mistake, but still end up with

1− α > β > 1− 2α

they can still get 0.2 pts. If they make two or three
mistakes, but still end up with

1− α > β > 1− 2α

they can still get 0.1 pts. They only get these points
for an effort to deal with our odd definition, and rec-
ognizing that the back flux is positive for ejection

from the gap. Just writing a different β without jus-
tification doesn’t get these “special” points.
In the event that a student derives

β =
5

3
β′ =

5

3
− 10

3
α

Then their minimum score for C.3 should be 0.8
pts, then subtract off 0.1 pt for every error in their
derivation if their answer is close. After that, look
back at their work on estimating α or β alone, and
add on half points for any success, up to 1.4 pts (or
1.6 pts, if no mistakes). The score they get for C.3
would be the larger of the two scoring approaches.
Original Solution
These might still apply in some cases; the first path
was rewritten above, so not included, and the sec-
ond path assumed reflective sheets at angles, so was
deleted. Choice C is a variation that can yield a cor-
rect value for β, but it would need to be combined
with some other approach to find α.
Choice C: Estimate the radiant flux from the gap
Assuming that the enclosed volume is a black body in equilib-
rium, which it isn’t, at a temperature equal to a quartic averaging
of the two temperatures: 1

2 (T
4
i +T 4

j ). Then the energy is radiated
out of the area according to

qlost = σAg
1

2
(T 4

i + T 4
j )

where Ag is the area of the gap, given by

Ag = 4h
√
A

But energy was entering the region at the rate

qin = εσA(T 4
i + T 4

j ),

so the fraction lost is

β =
Ag

2A
=

2h

ε
√
A

= 0.7

Marking Scheme:

Estimating flux out of gap 0.2 pts
Exact flux into volume 0.2 pts
Correct estimate of gap area 0.2 pts
Finding β 0.1 pts
0.65 ≤ β ≤ 0.75 0.1 pts
sum 0.8 pt

The bounds on allowed values for β are smaller in this approach,
because there really is only one reasonable answer.
Look back at the full solution to see how to score estimates for α
based on this β.
Note that this approach has fewer possible points, as the expres-
sion for the flux out of gap makes an assumption that is based on
unchecked physics.
Choice D: Another Approach?
Surely there will be some creative students who show other ap-
proaches. We will try and expand the marking scheme to recog-
nise these approaches as soon as they occur. A rough guide for
an incomplete approach is
Tentative Marking Scheme:

Relevant correct physics equation, each 0.2 pts
Reasonable approximation, each 0.1 pts

The maximum possible is still 1.6 pts.
An equation is only relevant if it can be argued that it would lead
to an answer to the question within the bounds of the approach
that they are following. For example, don’t award points for both
counting bounces and effective surfaces, unless each equation
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contributes to a unified approach that would lead to the answer.
Find themost rewarding approach, and award points for that line
of reasoning.
If a student only finds one of α or β, then they get 0.2 pts for the
first. The marking scheme assumed they would look for α first,
but they might have looked for β, and only found that.
Be very careful with mixing and matching approaches!
A student will not get half the points for one approach plus half
the points for another approach if they attempt, but don’t suc-
ceed, with both approaches. They will be awarded the higher of
the two scores, not the sum.

3. Numerically determine the temperature of sheet 1
and the temperature of sheet 5.
The solar intensity is I0 = 1360W/m2, the back-
ground temperature of space is Tb = 20K and is neg-
ligible.
Assuming a student does C.1 correctly, and uses 2α+
β = 1, then

β α T1 (K) T2 (K)
0.3 0.35 383 120
0.4 0.3 380 102
0.5 0.25 376 83
0.6 0.2 373 65
0.7 0.15 369 48

The other bound is α+ β = 1, in that case:

β α T1 (K) T2 (K)
0.3 0.7 370 189
0.4 0.6 368 165
0.5 0.5 365 140
0.6 0.4 363 114
0.7 0.3 361 87

The numbers agree well with the theoretical perfor-
mance of 320 K and 90 K. Some of the major differ-
ences are explained by different coatings on differ-
ent surfaces, a temperature and wavelength depen-
dence on emissivity that is designed to reflect visible
light from the sun while radiating infrared on the
sunside of sheet 1, and the sheets are not uniform
temperature.
Marking Scheme:

T1 consistent with own formula 0.1 pts
250K ≤ T1 ≤ 400K 0.1 pts
T5 consistent with own formula 0.1 pts
45K ≤ T5 ≤ 200K 0.1 pts
sum 0.4 pt

The grade depends on self consistency with the pre-
vious work, so the numbers must be checked!
Note that here is a casewhere follow on errors could
be penalized twice; students should recognize that
an answer is not reasonable, as T1 should be on the
order of the temperature of the Earth, and that T5

ought to have shown significant, but not incredible,
cooling.

Part D: The Cryo-Cooler

1. What state variables change?

(a) In order to force the gas through the plug,
which offers up considerable viscous friction,
P1 > P2; it is this pressure difference that is the
source of the force.

(b) Viscous friction is dissipative, so the internal
energy of the gas must decrease as it moves
through the plug, and then U1 > U2.

(c) Though no heat is gained or lost, this is not a
constant entropy process; that can be seen be-
cause it is an irreversible process. As such, S1 <
S2

(d) Since the process of moving across a pressure
gradient imparts kinetic energy to an object, it
is expected that the fluid velocity on the right
will be higher than the left. Since mass is con-
served, the volume of a mole of gas on the right
must also be higher than the volume of a mole
on the left, and V1 < V2.

(e) The correct answer is T1?T2. If this were an
ideal gas, T1 > T2 since U ∝ T . But this is not an
ideal gas, and U will be a function of tempera-
ture and density. As such, it is not possible to
know the comparative relation between T1 and
T2. That’s the whole point of this problem, and
the challenge of trying to make liquid helium.

Marking scheme:

For each correct response +0.2 pts
sum 1.0 pt

Explanations by the students are not needed.

2. A mole of gas at P1, V1, T1, U1 enters the porous plug
from the left, and that mole of gas exits the porous
plug on the other side at P2, V2, T2, U2.
Consider first a control volume approach
The figure below shows the motion of a mole of gas
through the plug; the mole is shown in pink. Gas to
the left of themole pushes themole through the plug
with a constant force P1A through a volume V1.

Gas Parcel

Porous Plug

The mole of gas moves through the plug to the right
hand side, in the process pushing on the air to the
right of the mole with a constant force P2A, through
a volume V2.

Porous Plug

Gas Parcel
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The work that the surrounding gas in region 1 does
on the gas pushing it into the plug is

W1 = P1V1

because the pressure is constant, and the effective
change of volume is V1. Similarly, when the gas en-
ters region 2 it must displace a volume V2 of gas that
was already there, so

W2 = −P2V2

The net work is then

Wnet = P1V1 − P2V2 (45)

Since there is no heat exchanged,

U2 − U1 = ∆U = Q+Wnet = P1V1 − P2V2 (46)

which implies

∆U = U2 − U1 = P1V1 − P2V2.

Upon rearranging

U2 + P2V2 = U1 + P1V1

and therefore
U + PV

is a conserved quantity.
Marking scheme:

Compute correctW1 0.1 pts
Compute correctW2 0.1 pts
Write energy law, Eq 46 0.2 pts
Show U + PV conserved 0.2 pts
sum 0.6 pt

Consider instead a differential approach
Another way to look at this problem is to focus on
a differential sample of gas as it moves through the
plug.
The figure below illustrates this
The total energy of parcel of molar size δm has two
relevant energy terms: the internal energy δU and
the bulk kinetic energy δK. It has a volume δV .
These four quantities are extrinsic, but to simplify
notation, we will drop the δ. It’s still there, just in-
visible.
For simplicity’s sake, assume a cylindrical shape to
the parcel, with an end cap area δA and a length
dx. Once again, we will drop the δ. There are three
forces that act on the shape, one associated with
pressure on the left end, one associated with pres-
sure on the right end, and frictional force associated
with viscosity against the walls of the container.
Since this is a parcel of differential length dx, the
net force associatedwith the pressure difference be-
tween the ends is

Fends = −V
dP

dx

where V is again the volume of the cylinder.
But this force is (mostly) balanced by the viscous
frictional force Fwalls with the walls of the sponge;
these two forces effectively add to zero. In fact, it is
the viscous forces with the wall that cause the pres-
sure gradient across the sponge.
The bulk kinetic energy of the parcel does not
change significantly as it moves through the sponge.
This is seen in that the bulk speed of the gas doesn’t
change significantly as it moves through the sponge.
The problem with this approach is that the system
is not in thermodynamic equilibrium; the process is
not reversible, so it is not possible to attach well de-
fined state variables. This means that

dU = TdS − PdV (47)

is not a function that can be integrated; in fact, dS *=
0 from the previous part of the problem. Arguing
that V dP = −TdS is rather handwavy, and resolving
this actually requires considering a control volume
approach.
Still, the energy conservation ideas still hold true,
even if thermodynamically poorly defined, so

dU = −PdV − V dP

since the part associated with −V dP doesn’t change
the bulk kinetic energy, and instead dissipates into
internal energy of the gas.
The result is that

dU = −d(PV )

or
U + PV

is a constant
Marking scheme:

Traditional δW = −PdV 0.1 pts
Bulk kinetic δK = −V dP 0.1 pts
Explain where δK goes 0.1 pts
Differential Eq 47 0.1 pts
integrate U + PV constant 0.1 pts
sum 0.5/0.6 pt

Because of the many subtle traps, this approach will
not get the same number of points as the control vol-
ume approach.
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3. One can find pressure on this graph by applying

dU = TdS − PdV

and then requiring constant entropy so that dS = 0,
and then

P = −
(
∂U

∂V

)

S

(48)

which are the negative slopes of the constant en-
tropy curves on a U − V graph.
Then

U + PV = U −
(
∂U

∂V

)

S

V

is the conserved quantity.
Now−(∂U/∂V )S ismeasured only at the point V1, U1,
and is the slope of the tangent line to the constant
entropy curve. Following that tangent line back a
distance V takes it to an intercept with the U axis,
and that intercept is then the conserved quantity.
More mathematically, define a function H

H = U + PV

then
U = H2 − P2V

is the equation of a line,

U = H2 +

(
∂U

∂V

)

S

∣∣∣∣
2

V (49)

with the U intercept equal to the conserved H2.
An estimate can bemade visually, but it is difficult to
be accurate. Try constructing a line from the point
V2 = 0.120, T2 = 7.5 that is tangent to the local isen-
trope, and the result will intercept the U axis. This
result is somewhere around 40. This is shown in
green below.

Now to improve the result.
Draw a line out from 39 that is tangent to the near-
est isentrope to V2 = 0.100, T2 = 7.5; draw another
line out from 41 that is also tangent to the nearest
isentrope to V2 = 0.100, T2 = 7.5. These are shown in
purple below.
Measuring the distance with a ruler, find the frac-
tional distance between the two purple lines to the
point V2 = 0.120, T2 = 7.5 along the highlighted green

line. It is about 75% theway from the bottom purple
line. This means that the conserved quantity ought
be 75% the way up on the highlighted blue section
on the graph. A line connecting the two is shown in
green.
This point is about 41kJ/kg. The actual value for the
conserved quantity is U + PV = 40.7kJ/kg.

Marking scheme:

Pressure formula stated, Eq 48 0.2 pts
Tangent intercept concept 0.4 pts
A first estimate for H 0.2 pts
Upper bound for estimate set 0.2 pts
Upper bound for estimate set 0.2 pts
Interpolated estimate set 0.2 pts
40.5 < H < 41.0 0.2/0.2 pts
40.2 < H < 41.2 0.1/0.2 pts
sum 1.4 pt

As the task asks for a graphical construction, and it
is not possible to construct an accurate tangent to
the isentrope at T2 = 7.5K based on a single line, stu-
dents must do something to improve or verify the
result, even if it is correct on the first guess. Hence
the upper and lower bound approach and interpo-
lation, or something equivalent.

4. Draw a series radial lines out from the conserved
point that are tangent to lines of constant entropy.
Mark the tangent point. Connect with a smooth
curve; this curve is the set of points U1 as a function
of V1 that has the conserved quantity. Look for the
maximum temperature intercept.
This happens at about T1 = 11K. If T1 is higher than
this, it would not be possible to cool down to T2 =
7.5K.
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Students don’t need to draw every line, as with a
straight edge one can find the tangent that maxi-
mizes the temperature T1 by shifting it around vi-
sually.

Line starts from student’s H 0.2 pts
Line intercepts an isentrope 0.2 pts
The isentrope matches max T1 0.2 pts
Stated T1 within 0.5K of student’s construction 0.1 pts
10K ≤ T1 ≤ 12K 0.1 pts
sum 0.8 pt

5. Using the slope of the line from the conserved quan-
tity to the maximum temperature point, compute
the pressure.
Using the results from above,

P1 = − (41)− (10)

(0)− (0.0170)
= 1.8MPa

If they didn’t know to use slope by this point, they
can’t generate an answer. As such, they would al-
ready have received points for the pressure for-
mula, and we only consider the numerical result

P agrees with the slope of the graph 0.1 pts
1.6MPa ≤ P1 ≤ 2.4MPa 0.1 pts
sum 0.2 pt


